11 research outputs found

    A comparison between electromechanical and pneumatic-controlled knee simulators for the investigation of wear of total knee replacements

    Get PDF
    More robust preclinical experimental wear simulation methods are required in order to simulate a wider range of activities, observed in different patient populations such as younger more active patients, as well as to fully meet and be capable of going well beyond the existing requirements of the relevant international standards. A new six-station electromechanically driven simulator (Simulation Solutions, UK) with five fully independently controlled axes of articulation for each station, capable of replicating deep knee bending as well as other adverse conditions, which can be operated in either force or displacement control with improved input kinematic following, has been developed to meet these requirements. This study investigated the wear of a fixed-bearing total knee replacement using this electromechanically driven fully independent knee simulator and compared it to previous data from a predominantly pneumatically controlled simulator in which each station was not fully independently controlled. In addition, the kinematic performance and the repeatability of the simulators have been investigated and compared to the international standard requirements. The wear rates from the electromechanical and pneumatic knee simulators were not significantly different, with wear rates of 2.6 ± 0.9 and 2.7 ± 0.9 mm3/million cycles (MC; mean ± 95% confidence interval, p = 0.99) and 5.4 ± 1.4 and 6.7 ± 1.5 mm3/MC (mean ± 95 confidence interval, p = 0.54) from the electromechanical and pneumatic simulators under intermediate levels (maximum 5 mm) and high levels (maximum 10 mm) of anterior–posterior displacements, respectively. However, the output kinematic profiles of the control system, which drive the motion of the simulator, followed the input kinematic profiles more closely on the electromechanical simulator than the pneumatic simulator. In addition, the electromechanical simulator was capable of following kinematic and loading input cycles within the tolerances of the international standard requirements (ISO 14243-3). The new-generation electromechanical knee simulator with fully independent control has the potential to be used for a much wider range of kinematic conditions, including high-flexion and other severe conditions, due to its improved capability and performance in comparison to the previously used pneumatic-controlled simulators

    In vivo electrochemical corrosion study of a CoCrMo biomedical alloy in human synovial fluids.

    No full text
    The present study was initiated with the aim to assess the in vivo electrochemical corrosion behaviour of CoCrMo biomedical alloys in human synovial fluids in an attempt to identify possible patient or pathology specific effects. For this, electrochemical measurements (open circuit potential OCP, polarization resistance Rp, potentiodynamic polarization curves, electrochemical impedance spectroscopy EIS) were carried out on fluids extracted from patients with different articular pathologies and prosthesis revisions. Those electrochemical measurements could be carried out with outstanding precision and signal stability. The results show that the corrosion behaviour of CoCrMo alloy in synovial fluids not only depends on material reactivity but also on the specific reactions of synovial fluid components, most likely involving reactive oxygen species. In some patients the latter were found to determine the whole cathodic and anodic electrochemical response. Depending on patients, corrosion rates varied significantly between 50 and 750mgdm(-2)year(-1)

    Simulator Testing of Total Knee Replacements

    No full text

    Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation

    No full text
    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ® L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISOinitial = 2.7 ± 0.3 mg/million cycles. During the ASTM test period (10–15 million cycles) a gravimetric wear rate of 0.14 ± 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar artificial disc is loaded with a linear wear path.Testing according to ASTM F2423-05 with pure unidirectional motion does not reflect the kinematics of TDA patients‘ daily activities. Based on our findings it seems to be more reliable to predict the clinical wear behavior of an artificial disc replacement using the ISO/FDIS 18192-1 method
    corecore