3,242 research outputs found

    Limitations of phase-sorting based pencil beam scanned 4D proton dose calculations under irregular motion.

    Get PDF
    Objective.4D dose calculation (4DDC) for pencil beam scanned (PBS) proton therapy is typically based on phase-sorting of individual pencil beams onto phases of a single breathing cycle 4DCT. Understanding the dosimetric limitations and uncertainties of this approach is essential, especially for the realistic treatment scenario with irregular free breathing motion.Approach.For three liver and three lung cancer patient CTs, the deformable multi-cycle motion from 4DMRIs was used to generate six synthetic 4DCT(MRI)s, providing irregular motion (11/15 cycles for liver/lung; tumor amplitudes ∌4-18 mm). 4DDCs for two-field plans were performed, with the temporal resolution of the pencil beam delivery (4-200 ms) or with 8 phases per breathing cycle (500-1000 ms). For the phase-sorting approach, the tumor center motion was used to determine the phase assignment of each spot. The dose was calculated either using the full free breathing motion or individually repeating each single cycle. Additionally, the use of an irregular surrogate signal prior to 4DDC on a repeated cycle was simulated. The CTV volume with absolute dose differences >5% (Vdosediff>5%) and differences in CTVV95%andD5%-D95%compared to the free breathing scenario were evaluated.Main results.Compared to 4DDC considering the full free breathing motion with finer spot-wise temporal resolution, 4DDC based on a repeated single 4DCT resulted inVdosediff>5%of on average 34%, which resulted in an overestimation ofV95%up to 24%. However, surrogate based phase-sorting prior to 4DDC on a single cycle 4DCT, reduced the averageVdosediff>5%to 16% (overestimationV95%up to 19%). The 4DDC results were greatly influenced by the choice of reference cycle (Vdosediff>5%up to 55%) and differences due to temporal resolution were much smaller (Vdosediff>5%up to 10%).Significance.It is important to properly consider motion irregularity in 4D dosimetric evaluations of PBS proton treatments, as 4DDC based on a single 4DCT can lead to an underestimation of motion effects

    A fast analytical dose calculation approach for MRI-guided proton therapy.

    Get PDF
    Objective.Magnetic resonance (MR) is an innovative technology for online image guidance in conventional radiotherapy and is also starting to be considered for proton therapy as well. For MR-guided therapy, particularly for online plan adaptations, fast dose calculation is essential. Monte Carlo (MC) simulations, however, which are considered the gold standard for proton dose calculations, are very time-consuming. To address the need for an efficient dose calculation approach for MRI-guided proton therapy, we have developed a fast GPU-based modification of an analytical dose calculation algorithm incorporating beam deflections caused by magnetic fields.Approach.Proton beams (70-229 MeV) in orthogonal magnetic fields (0.5/1.5 T) were simulated using TOPAS-MC and central beam trajectories were extracted to generate look-up tables (LUTs) of incremental rotation angles as a function of water-equivalent depth. Beam trajectories are then reconstructed using these LUTs for the modified ray casting dose calculation. The algorithm was validated against MC in water, different materials and for four example patient cases, whereby it has also been fully incorporated into a treatment plan optimisation regime.Main results.Excellent agreement between analytical and MC dose distributions could be observed with sub-millimetre range deviations and differences in lateral shifts <2 mm even for high densities (1000 HU). 2%/2 mm gamma pass rates were comparable to the 0 T scenario and above 94.5% apart for the lung case. Further, comparable treatment plan quality could be achieved regardless of magnetic field strength.Significance.A new method for accurate and fast proton dose calculation in magnetic fields has been developed and successfully implemented for treatment plan optimisation

    Technical note: Towards more realistic 4DCT(MRI) numerical lung phantoms.

    Get PDF
    BACKGROUND Numerical 4D phantoms, together with associated ground truth motion, offer a flexible and comprehensive data set for realistic simulations in radiotherapy and radiology in target sites affected by respiratory motion. PURPOSE We present an openly available upgrade to previously reported methods for generating realistic 4DCT lung numerical phantoms, which now incorporate respiratory ribcage motion and improved lung density representation throughout the breathing cycle. METHODS Density information of reference CTs, toget her with motion from multiple breathing cycle 4DMRIs have been combined to generate synthetic 4DCTs (4DCT(MRI)s). Inter-subject correspondence between the CT and MRI anatomy was first established via deformable image registration (DIR) of binary masks of the lungs and ribcage. Ribcage and lung motions were extracted independently from the 4DMRIs using DIR and applied to the corresponding locations in the CT after post-processing to preserve sliding organ motion. In addition, based on the Jacobian determinant of the resulting deformation vector fields, lung densities were scaled on a voxel-wise basis to more accurately represent changes in local lung density. For validating this process, synthetic 4DCTs, referred to as 4DCT(CT)s, were compared to the originating 4DCTs using motion extracted from the latter, and the dosimetric impact of the new features of ribcage motion and density correction were analyzed using pencil beam scanned proton 4D dose calculations. RESULTS Lung density scaling led to a reduction of maximum mean lung Hounsfield units (HU) differences from 45 to 12 HU when comparing simulated 4DCT(CT)s to their originating 4DCTs. Comparing 4D dose distributions calculated on the enhanced 4DCT(CT)s to those on the original 4DCTs yielded 2%/2 mm gamma pass rates above 97% with an average improvement of 1.4% compared to previously reported phantoms. CONCLUSIONS A previously reported 4DCT(MRI) workflow has been successfully improved and the resulting numerical phantoms exhibit more accurate lung density representations and realistic ribcage motion

    A motion model-guided 4D dose reconstruction for pencil beam scanned proton therapy.

    Get PDF
    Objective.4D dose reconstruction in proton therapy with pencil beam scanning (PBS) typically relies on a single pre-treatment 4DCT (p4DCT). However, breathing motion during the fractionated treatment can vary considerably in both amplitude and frequency. We present a novel 4D dose reconstruction method combining delivery log files with patient-specific motion models, to account for the dosimetric effect of intra- and inter-fractional breathing variability.Approach.Correlation between an external breathing surrogate and anatomical deformations of the p4DCT is established using principal component analysis. Using motion trajectories of a surface marker acquired during the dose delivery by an optical tracking system, deformable motion fields are retrospectively reconstructed and used to generate time-resolved synthetic 4DCTs ('5DCTs') by warping a reference CT. For three abdominal/thoracic patients, treated with respiratory gating and rescanning, example fraction doses were reconstructed using the resulting 5DCTs and delivery log files. The motion model was validated beforehand using leave-one-out cross-validation (LOOCV) with subsequent 4D dose evaluations. Moreover, besides fractional motion, fractional anatomical changes were incorporated as proof of concept.Main results.For motion model validation, the comparison of 4D dose distributions for the original 4DCT and predicted LOOCV resulted in 3%/3 mm gamma pass rates above 96.2%. Prospective gating simulations on the p4DCT can overestimate the target dose coverage V95%by up to 2.1% compared to 4D dose reconstruction based on observed surrogate trajectories. Nevertheless, for the studied clinical cases treated with respiratory-gating and rescanning, an acceptable target coverage was maintained with V95%remaining above 98.8% for all studied fractions. For these gated treatments, larger dosimetric differences occurred due to CT changes than due to breathing variations.Significance.To gain a better estimate of the delivered dose, a retrospective 4D dose reconstruction workflow based on motion data acquired during PBS proton treatments was implemented and validated, thus considering both intra- and inter-fractional motion and anatomy changes

    The impact of organ motion and the appliance of mitigation strategies on the effectiveness of hypoxia-guided proton therapy for non-small cell lung cancer.

    Get PDF
    BACKGROUND AND PURPOSE To investigate the impact of organ motion on hypoxia-guided proton therapy treatments for non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS Hypoxia PET and 4D imaging data of six NSCLC patients were used to simulate hypoxia-guided proton therapy with different motion mitigation strategies including rescanning, breath-hold, respiratory gating and tumour tracking. Motion-induced dose degradation was estimated for treatment plans with dose painting of hypoxic tumour sub-volumes at escalated dose levels. Tumour control probability (TCP) and dosimetry indices were assessed to weigh the clinical benefit of dose escalation and motion mitigation. In addition, the difference in normal tissue complication probability (NTCP) between escalated proton and photon VMAT treatments have been assessed. RESULTS Motion-induced dose degradation was found for target coverage (CTV V95% up to -4%) and quality of the dose-escalation-by-contour (QRMS up to 6%) as a function of motion amplitude and amount of dose escalation. The TCP benefit coming from dose escalation (+4-13%) outweighs the motion-induced losses (<2%). Significant average NTCP reductions of dose-escalated proton plans were found for lungs (-14%), oesophagus (-10%) and heart (-16%) compared to conventional VMAT plans. The best plan dosimetry was obtained with breath hold and respiratory gating with rescanning. CONCLUSION NSCLC affected by hypoxia appears to be a prime target for proton therapy which, by dose-escalation, allows to mitigate hypoxia-induced radio-resistance despite the sensitivity to organ motion. Furthermore, substantial reduction in normal tissue toxicity can be expected compared to conventional VMAT. Accessibility and standardization of hypoxia imaging and clinical trials are necessary to confirm these findings in a clinical setting

    Ultra-high dose rate dosimetry for pre-clinical experiments with mm-small proton fields.

    Get PDF
    PURPOSE To characterize an experimental setup for ultra-high dose rate (UHDR) proton irradiations, and to address the challenges of dosimetry in millimetre-small pencil proton beams. METHODS At the PSI Gantry 1, high-energy transmission pencil beams can be delivered to biological samples and detectors up to a maximum local dose rate of ∌9000 Gy/s. In the presented setup, a Faraday cup is used to measure the delivered number of protons up to ultra-high dose rates. The response of transmission ion-chambers, as well as of different field detectors, was characterized over a wide range of dose rates using the Faraday cup as reference. RESULTS The reproducibility of the delivered proton charge was better than 1 % in the proposed experimental setup. EBT3 films, Al2O3:C optically stimulated luminescence detectors and a PTW microDiamond were used to validate the predicted dose. Transmission ionization chambers showed significant volume ion-recombination (>30 % in the tested conditions) which can be parametrized as a function of the maximum proton current density. Over the considered range, EBT3 films, inorganic scintillator-based screens and the PTW microDiamond were demonstrated to be dose rate independent within ±3 %, ±1.8 % and ±1 %, respectively. CONCLUSIONS Faraday cups are versatile dosimetry instruments that can be used for dose estimation, field detector characterization and on-line dose verification for pre-clinical experiments in UHDR proton pencil beams. Among the tested detectors, the commercial PTW microDiamond was found to be a suitable option to measure real time the dosimetric properties of narrow pencil proton beams for dose rates up to 2.2 kGy/s

    'Working out’ identity: distance runners and the management of disrupted identity

    Get PDF
    This article contributes fresh perspectives to the empirical literature on the sociology of the body, and of leisure and identity, by analysing the impact of long-term injury on the identities of two amateur but serious middle/long-distance runners. Employing a symbolic interactionist framework,and utilising data derived from a collaborative autoethnographic project, it explores the role of ‘identity work’ in providing continuity of identity during the liminality of long-term injury and rehabilitation, which poses a fundamental challenge to athletic identity. Specifically, the analysis applies Snow and Anderson’s (1995) and Perinbanayagam’s (2000) theoretical conceptualisations in order to examine the various forms of identity work undertaken by the injured participants, along the dimensions of materialistic, associative and vocabularic identifications. Such identity work was found to be crucial in sustaining a credible sporting identity in the face of disruption to the running self, and in generating momentum towards the goal of restitution to full running fitness and reengagement with a cherished form of leisure. KEYWORDS: identity work, symbolic interactionism, distance running, disrupted identit

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2
    • 

    corecore