16 research outputs found

    Probing bacterial-fungal interactions at the single cell level.

    Get PDF
    Interactions between fungi and prokaryotes are abundant in many ecological systems. A wide variety of biomolecules regulate such interactions and many of them have found medicinal or biotechnological applications. However, studying a fungal-bacterial system at a cellular level is technically challenging. New microfluidic devices provided a platform for microscopic studies and for long-term, time-lapse experiments. Application of these novel tools revealed insights into the dynamic interactions between the basidiomycete Coprinopsis cinerea and the bacterium Bacillus subtilis. Direct contact was mediated by polar attachment of bacteria to only a subset of fungal hyphae suggesting a differential competence of fungal hyphae and thus differentiation of hyphae within a mycelium. The fungicidal activity of B. subtilis was monitored at a cellular level and showed a novel mode of action on fungal hyphae

    Bidirectional propagation of signals and nutrients in fungal networks via specialized hyphae

    Get PDF
    Intercellular distribution of nutrients and coordination of responses to internal and external cues via endogenous signaling molecules are hallmarks of multicellular organisms. Vegetative mycelia of multicellular fungi are syncytial networks of interconnected hyphae resulting from hyphal tip growth, branching, and fusion. Such mycelia can reach considerable dimensions and, thus, different parts can be exposed to quite different environmental conditions. Our knowledge about the mechanisms by which fungal mycelia can adjust nutrient gradients or coordinate their defense response to fungivores is scarce, in part due to limitations in technologies currently available for examining different parts of a mycelium over longer time periods at the microscopic level. Here, we combined a tailor-made microfluidic platform with time-lapse fluorescence microscopy to visualize the dynamic response of the vegetative mycelium of a basidiomycete to two different stimuli. The microfluidic platform allows simultaneous monitoring at both the colony and single-hypha level. We followed the dynamics of the distribution of a locally administered nutrient analog and the defense response to spatially confined predation by a fungivorous nematode. Although both responses of the mycelium were constrained locally, we observed long-distance propagation for both the nutrient analog and defense response in a subset of hyphae. This propagation along hyphae occurred in both acropetal and basipetal directions and, intriguingly, the direction was found to alternate every 3 hr in an individual hypha. These results suggest that multicellular fungi have, as of yet, undescribed mechanisms to coordinate the distribution of nutrients and their behavioral response upon attack by fungivores

    A new network for the advancement of marine biotechnology in europe and beyond

    Get PDF
    Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anticoagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond
    corecore