1,513 research outputs found

    A preliminary study of the detection of geomorphological features over northeast Africa by satellite radiation measurements in the visible and infrared

    Get PDF
    Detecting geomorphological features over Northeast Africa by Nimbus 2 visible and infrared radiation measurement

    House of the soul

    Get PDF
    These poems, as the title suggests, are explorations of being both a physical being and a spiritual being. They are all equally autobiographical and fictitious in an attempt to search for the universal in the individual experience

    Quantum Monte Carlo calculations of H2_2 dissociation on Si(001)

    Get PDF
    We present quantum Monte Carlo calculations for various reaction pathways of H2_2 with Si(001), using large model clusters of the surface. We obtain reaction energies and energy barriers noticeably higher than those from approximate exchange-correlation functionals. In improvement over previous studies, our adsorption barriers closely agree with experimental data. For desorption, the calculations give barriers for conventional pathways in excess of the presently accepted experimental value, and pinpoint the role of coverage effects and desorption from steps.Comment: 4 pages, 1 figur

    Investor Attitudes, Investment Screen Use, and Socially Responsible Investment Behavior

    Get PDF
    There is an increasing demand for socially responsible investment (SRI), and SRI screens are an important source of information for investors. Yet, little is known about the relationship between investors’ attitudes, use of SRI screens, and actual SRI behavior. To examine this relationship, we gathered data on investors’ environmental attitudes, use of SRI screens, and SRI behavior. We find that four out of five components of the New Ecological Paradigm (NEP) scale, a measure of basic environmental attitudes, are associated with specific attitudes towards environmentally responsible investment. These specific attitudes in turn are positively associated with SRI screen use, and SRI screen use is positively associated with the percentage of investors’ portfolio held in SRIs. There is also a significant direct relationship between specific environmentally responsible investment attitudes and SRI holdings. Our results suggest that there are complex, multi-dimensional relationships between investor attitudes, SRI screen use, and investment behavior

    Experimental Fracture Model versus Osteotomy Model in Metacarpal Bone Plate Fixation

    Get PDF
    Introduction. Osteotomy or fracture models can be used to evaluate mechanical properties of fixation techniques of the hand skeleton in vitro. Although many studies make use of osteotomy models, fracture models simulate the clinical situation more realistically. This study investigates monocortical and bicortical plate fixation on metacarpal bones considering both aforementioned models to decide which method is best suited to test fixation techniques. Methods. Porcine metacarpal bones (n = 40) were randomized into 4 groups. In groups I and II bones were fractured with a modified 3-point bending test. The intact bones represented a further control group to which the other groups after fixation were compared. In groups III and IV a standard osteotomy was carried out. Bones were fixated with plates monocortically (group I, III) and bicortically (group II, IV) and tested for failure. Results. Bones fractured at a mean maximum load of 482.8 N ± 104.8 N with a relative standard deviation (RSD) of 21.7%, mean stiffness was 122.3 ± 35 N/mm. In the fracture model, there was a significant difference (P = 0.01) for maximum load of monocortically and bicortically fixed bones in contrast to the osteotomy model (P = 0.9). Discussion. In the fracture model, because one can use the same bone for both measurements in the intact state and the bone-plate construct states, the impact of inter-individual differences is reduced. In contrast to the osteotomy model there are differences between monocortical and bicortical fixations in the fracture model. Thus simulation of the in vivo situation is better and seems to be suitable for the evaluation of mechanical properties of fixation techniques on metacarpals

    POLDER observations of cloud bidirectional reflectances compared to a plane-parallel model using the International Satellite Cloud Climatology Project cloud phase functions

    No full text
    International audienceThis study investigates the validity of the plane-parallel cloud model and in addition the suitability of water droplet and ice polycrystal phase functions for stratocumulus and cirrus clouds, respectively. To do that, we take advantage of the multidirectional viewing capability of the Polarization and Directionality of the Earth's Reflectances (POLDER) instrument which allows us to characterize the anisotropy of the reflected radiation field. We focus on the analysis of airborne-POLDER data acquired over stratocumulus and cirrus clouds during two selected flights (on April 17 and April 18, 1994) of the European Cloud and Radiation Experiment (EUCREX'94) campaign. The bidirectional reflectances measured in the 0.86 μm channel are compared to plane-parallel cloud simulations computed with the microphysical models used by the International Satellite Cloud Climatology Project (ISCCP). Although clouds are not homogeneous plane-parallel layers, the extended cloud layers under study appear to act, on average, as a homogeneous plane-parallel layer. The standard water droplet model (with an effective radius of 10 μm) used in the ISCCP analysis seems to be suitable for stratocumulus clouds. The relative root-mean-square difference between the observed bidirectional reflectances and the model is only 2%. For cirrus clouds, the water droplet cloud model is definitely inadequate since the rms difference rises to 9%; when the ice polycrystal model chosen for the reanalysis of ISCCP data is used instead, the rms difference is reduced to 3%

    Statistical modeling of ground motion relations for seismic hazard analysis

    Full text link
    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions. etc

    Measuring degree-degree association in networks

    Full text link
    The Pearson correlation coefficient is commonly used for quantifying the global level of degree-degree association in complex networks. Here, we use a probabilistic representation of the underlying network structure for assessing the applicability of different association measures to heavy-tailed degree distributions. Theoretical arguments together with our numerical study indicate that Pearson's coefficient often depends on the size of networks with equal association structure, impeding a systematic comparison of real-world networks. In contrast, Kendall-Gibbons' τb\tau_{b} is a considerably more robust measure of the degree-degree association

    Minimally invasive reconstruction of lateral tibial plateau fractures using the jail technique: a biomechanical study

    Get PDF
    BACKGROUND: This study described a novel, minimally invasive reconstruction technique of lateral tibial plateau fractures using a three-screw jail technique and compared it to a conventional two-screw osteosynthesis technique. The benefit of an additional screw implanted in the proximal tibia from the anterior at an angle of 90° below the conventional two-screw reconstruction after lateral tibial plateau fracture was evaluated. This new method was called the jail technique. METHODS: The two reconstruction techniques were tested using a porcine model (n = 40). Fracture was simulated using a defined osteotomy of the lateral tibial plateau. Load-to-failure and multiple cyclic loading tests were conducted using a material testing machine. Twenty tibias were used for each reconstruction technique, ten of which were loaded in a load-to-failure protocol and ten cyclically loaded (5000 times) between 200 and 1000 N using a ramp protocol. Displacement, stiffness and yield load were determined from the resulting load displacement curve. Failure was macroscopically documented. RESULTS: In the load-to-failure testing, the jail technique showed a significantly higher mean maximum load (2275.9 N) in comparison to the conventional reconstruction (1796.5 N, p < 0.001). The trend for better outcomes for the novel technique in terms of stiffness and yield load did not reach statistical significance (p > 0.05). In cyclic testing, the jail technique also showed better trends in displacement that were not statistically significant. Failure modes showed a tendency of screws cutting through the bone (cut-out) in the conventional reconstruction. No cut-out but a bending of the lag screws at the site of the additional third screw was observed in the jail technique. CONCLUSIONS: The results of this study indicate that the jail and the conventional technique have seemingly similar biomechanical properties. This suggests that the jail technique may be a feasible alternative to conventional screw osteosynthesis in the minimally invasive reconstruction of lateral tibial plateau fractures. A potential advantage of the jail technique is the prevention of screw cut-outs through the cancellous bone
    corecore