508 research outputs found

    Cuticle and muscle variation underlying phenotypic plasticity in barnacle feeding leg and penis form

    Get PDF
    Many aspects of barnacle body form are known to be developmentally plastic. Perhaps the most striking examples of such plasticity occur in their feeding legs and unusually long penises, the sizes and shapes of which can change dramatically and adaptively with changes in conspecific density and local water flow conditions. However, whether variation in overall appendage form is mirrored by structural responses in cuticle and muscle is not known. In order to determine how structural variation underlies phenotypic plasticity in barnacle appendages, we examined barnacles occurring at low and high population densities from one wave-protected and one wave-exposed site. We used histological sectioning and fluorescence microscopy of feeding legs and penises to compare cuticle thickness, muscle thickness, and muscle organization, and artificial penis inflation to compare penis extensibility. We observed striking differences in cuticle thickness, muscle thickness, and muscle organization between sites that differed in water velocity, but we found no clear differences associated with variation in conspecific density. Penis extensibility also did not differ consistently between sites. These results are consistent with an adaptive explanation for much of the remarkable and complex variation in barnacle feeding leg and penis morphology among sites that differ in water velocity

    The photochemistry of Rydberg-excited cyclobutanone: Photoinduced processes and ground state dynamics

    Get PDF
    Owing to ring strain, cyclic ketones exhibit complex excited state dynamics with multiple competing photochemical channels active on the ultrafast timescale. While the excited state dynamics of cyclobutanone after π* ← n excitation into the lowest-energy excited singlet (S1) state has been extensively studied, the dynamics following 3s ← n excitation into the higher-lying singlet Rydberg (S2) state are less well understood. Herein, we employ fully quantum multiconfigurational time-dependent Hartree (MCTDH) simulations using a model Hamiltonian as well as “on-the-fly” trajectory-based surface-hopping dynamics (TSHD) simulations to study the relaxation dynamics of cyclobutanone following 3s ← n excitation and to predict the ultrafast electron diffraction scattering signature of these relaxation dynamics. Our MCTDH and TSHD simulations indicate that relaxation from the initially-populated singlet Rydberg (S2) state occurs on the timescale of a few hundreds of femtoseconds to a picosecond, consistent with the symmetry-forbidden nature of the state-to-state transition involved. There is no obvious involvement of excited triplet states within the timeframe of our simulations (<2 ps). After non-radiative relaxation to the electronic ground state (S0), vibrationally hot cyclobutanone has sufficient internal energy to form multiple fragmented products including C2H4+ CH2CO (C2; 20%) and C3H6 + CO (C3; 2.5%). We discuss the limitations of our MCTDH and TSHD simulations, how these may influence the excited state dynamics we observe, and—ultimately—the predictive power of the simulated experimental observable

    Diacetyl in Australian dry red wines and its significance in wine quality

    Get PDF
    The diacetyl content of 466 Australian dry red table wines ranged from less than 0.1 ppm to 7.5 ppm with a mean of 2.4 ppm. Malo-lactic fermentation had occurred in 71 per cent of the wines, which had a mean diacetyl level of 2.8 ppm. In wines which had not undergone malo-lactic fermentation the mean diacetyl level 1.3 ppm.Taste threshold tests showed that a difference of as little as 1 ppm could be detected in a light dry red wine containing 0.3 ppm diacetyl. In a full flavoured darker wine of higher quality containing 3 ppm the minimum detectable addition was 1.3 ppm.It is considered that diacetyl in amounts up to 2 to 4 ppm, depending on the wine, improved quality by adding complexity to the flavour. Above these levels the aroma of diacetyl became identifiable as such and resulted in a reduction in quality. The diacetyl content of a range of red table wines stored at 15° C showed a mean decrease of 19 per cent in diacetyl content in 4 months, 22 per cent in 8 months, 26 per cent in 12 months and 28 per c ent in 18 months

    lnfluence of grape variety, climate and soil on grape composition and on the composition and quality of table wines

    Get PDF
    The influence of grape variety, soil type, climatic area and year of vintage on grape composition and wine quality was studied over a six-year period with three grape varieties in a eo-operative investigation. The wines were made under carefully controlled conditions to eliminate, as far as possible, any effect of winemaking technique. All viticultural and oenological treatments were replicated so that the data could be analysed statistically. When grapes from different viticultural areas were made into table wines, the quality of the wines was most closely related to grape variety, followed by climatic area and least of all by soil type.Reproducible differences in grape and wine composition were found for the grape varieties studied. For fhe same sugar content Riesling grapes and wine contained more acidity and a higher tartaric acid/malic acid ratio than Clare Riesling grapes and wine. They also contained less nitrogen, phosphorus and potassium. Shiraz grapes were relatively high in malic acid.The year of vintage strongly influenced the tartaric acid/malic acid ratio, particularly for Riesling and Clare Riesling, and also certain other constituents. Certain years could be designated as either high or low malic acid years for a particular grape variety.The soil type influenced the amounts of certain of the constituents of grapes and wine, but had no significant effects on the wine quality. Wines from the same varieties grown on two widely different soils in the same area could not be differentiated in replicated taste tests. The soil depth, drainage and waterholding capacity appeared to be more important than composition per se.Wines made from irrigated vineyards in the warm River Murray viticultural region, contained similar amounts of tartaric and malic acids, but were higher in pH, than wines made from the same grape varieties in the cooler non-irrigated Barossa Valley. Wines from irrigated grapes were generally of somewhat lower quality than those made from grapes of the same variety grown without irrigation in a cooler area. The time of harvesting irrigated grapes appeared to be critical to achieve the necessary balance between sugar, acid and flavour. Shiraz grapes grown under irrigation contained considerably less colour than grapes of the same variety grown without irrigation.Aroma was correlated with flavour in assessing wine quality, but numerical values ascribed to these parameters did not correlate generally with the wine constituents measured. A positive correlation existed between high tasting scores and high Ball/acid ratio

    Power : Three Women Painters

    Get PDF
    Power : Three Women Painters Catalogue of exhibition of works by Lisa Anderson, Judith Alexandrovics and Pie Rankine Essay by Marion Hardma

    Chelation-driven fluorescence deactivation in three alkali earth metal MOFs containing 2,2’-dihydroxybiphenyl-4,4’-dicarboxylate

    Get PDF
    First published online 04 Sep 2013Three new metal-organic frameworks (MOFs) have been synthesised from alkali earth metal ions of increasing ionic radii (Mg, Ca and Sr) and 2,2’-dihydroxybiphenyl-4,4’-dicarboxylic acid (H4diol). The distinct coordination environments, framework topologies and the non-coordinated diol moieties accessed are a result of using differently sized metal ions for MOF synthesis which affects the ability of the diol moieties to chelate the metal. Detailed structural analysis of [Sr3(H2diol)3(DMF)5], [Ca3.5(Hdiol)(H2diol)2(DMF)5] and [Mg(H2diol)(DMF)2] show distinctive variations in variable temperature expansion/contraction properties and porosity. In addition, [Sr3(H2diol)3(DMF)5] and [Ca3.5(Hdiol)(H2diol)2(DMF)5] display a broad fluorescence emission (λmax = ~435 nm) under ultraviolet light due to the presence of non-coordinated biphenyl-diol moieties within the structures, while chelation of Mg by the diol pocket in [Mg(H2diol)(DMF)2] leads to quenching of the ligand fluorescence.Damien Rankine, Tony D. Keene, Christopher J. Sumby and Christian J. Doona

    Does functionalisation enhance CO2 uptake in interpenetrated MOFs? An examination of the IRMOF-9 series

    Get PDF
    The effect of pore functionalisation (-I, -OH, -OCH3) on a series of topologically equivalent, interpenetrated metal-organic frameworks (MOFs) was assessed by both simulation and experiment. Counter-intuitively, a decreased affinity for CO2 was observed in the functionalised materials, compared to the non-functionalised material. This result highlights the importance of considering the combined effects of network topology and chemical functionality in the design of MOFs for enhanced CO2 adsorptionRavichandar Babarao, Campbell J. Coghlan, Damien Rankine, Witold M. Bloch, Gemma K. Gransbury, Hiroshi Sato, Susumu Kitagawa, Christopher J. Sumby, Matthew R. Hill and Christian J. Doona
    corecore