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Barnett Replies In their comment [1] on my letter [2], Iwo
Bialynicki-Birula and Zofia Bialynicka-Birula identify the
circulation, a measure derived from fluid mechanics, as
their method of choice to search for vortices. They require,
in particular, that a vortex has a nonvanishing circulation
for any path circling the vortex core even arbitrarily close
to the axis, where this would require a singular vorticity
and, with it, a divergent particle velocity. They justify the
statement that there is no vortex for a relativistic electron by
the absence of such a divergent velocity. As we show, there
are no places in Nature where a singular vorticity is to be
found and conclude that their preferred criterion for the
existence of a vortex is too restrictive. We illustrate this
point with examples from fluid mechanics, atmospheric
physics, superfluidity, and optics.

Let us begin by summarizing the argument presented in
the Comment [1]. The circulation is the line integral of the
particle velocity around a closed loop:

r:y(v-dl (1)

and may be expected to take a nonzero value if the path
encloses a vortex. For I" to take a constant value for any
curve enclosing the vortex core, however short in length,
we require a divergent azimuthal particle velocity near the
core, v,(r) = I'/(2zr), corresponding to a singular vor-
ticity. This idealization is unphysical, although it does have
its mathematical uses [3].

The problem of a divergent particle velocity in the field
of fluid mechanics was addressed by Rankine by intro-
ducing his combined vortex [4] in which the azimuthal
particle velocity near the core is replaced by v,(r) =
['r/(2zR?) for r < R. The Rankine vortex and variants
of it have been widely employed, notably in atmospheric
physics [5] and optics [6]. For distances from the axis that
are less that R, the circulation tends to zero as r* so that by
the criterion required in [1] we would have to conclude that
the Rankine vortex is not a vortex.

In the quantum domain the study of vortices has long
been a key component in the field of superfluidity [7-9]. In
a superfluid we introduce a local velocity density that is
proportional to the gradient of the phase of the wave
function [10,11] and for wave function with azimuthal
phase dependence, e, this suggests the existence of a
singular vorticity. This simple description breaks down for
small distances from the axis, at least on the atomic scale
[7]. A superfluid will have a vanishing circulation for loops
with a radius less than this distance. As with classical
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fluids, adopting the criterion required in the Comment [1]
would mean that superfluid vortices are not vortices.

As a final example, we turn to optics. It is here, I suggest,
that the closest analogy to the relativistic-electron vortex is
to be found. Phase singularities are ubiquitous in optics
and, indeed, in other wave phenomena [12]. Laguerre-
Gaussian laser modes, for example, have an azimuthal
phase-dependence e [13-15]. The associated phase
singularity on the beam axis goes by many names includ-
ing, perhaps most regularly, an optical vortex [6,16,17].
There is no suggestion of photons localized near this vortex
orbiting it at unbounded speeds and the use of the vorticity
and circulation from classical fluid mechanics is clearly
inappropriate. Optical vortices do not have a singular
vorticity and so, once again, by the criterion advocated
in the Comment [1] are not vortices.

The term “vortex” has been used in a wide variety of
ways in physics and even in fluid mechanics there are many
distinct phenomena, including a vortex, a vortex line, and
a vortex tube [18]. Of these the most demanding and also
the most unphysical is the line vortex which is “a vortex
filament of finite strength and zero cross section; it is a
singular distribution of vorticity” [18]. This is the criterion
by which Bialynicki-Birula and Bialynicka-Birula have
chosen to define a vortex. Yet regions of divergent vorticity
exist nowhere in Nature and if we are to accept the
proposed criterion then we have no choice but to abandon
the term ““vortex” altogether and leave vortices as purely
unphysical barren objects. I venture to suggest that few
physicists would be prepared to accept this.

Relativistic electrons do indeed exhibit vortices but these
are vortices analogous to those already familiar from optics
rather than from fluid mechanics.
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