84 research outputs found

    Fixation of bioactive compounds to the cuticle of Artemia

    Get PDF
    Artemia is extensively used in aquaculture to feed early stages of cultured marine species. A problem associated with this practice is that Artemia fails to supply some essential nutrients. As a possible solution, we have devised a procedure to make Artemia a vehicle for exogenous nutrients and other bioactive compounds. It consists of the construction of chimeric proteins composed of a chitin-binding domain, which binds to the cuticle of Artemia, and a carrier domain that conveys a functional property. As confirmatory examples, we describe the successful fixation to Artemia's metanauplii of two hybrid proteins: a ÎČ-galactosidase from the thermophilic bacterium Thermotoga maritima and the jellyfish green fluorescent protein (GFP), both linked to the CBM2 chitin-binding domain from the hyperthermophilic archaeon Pyrococcus furiosus. Positive results of experiments carried out ex vivo and in vivo show the validity of this approach. The methodology used could become a general procedure for the attachment of different kinds of bioactive compounds, such as enzymes, hormones, antibiotics, etc., to the cuticle of Artemia as well as other arthropods. Statement of relevance: Our results overcome shortcomings of Artemia as a feedstock.En prensa2,04

    PsPMEP, a pollen specific pectin methylesterase of pea (Pisum sativum L.)

    Full text link
    [EN] Pectin methylesterases (PMEs) are a family of enzymes involved in plant reproductive processes such as pollen development and pollen tube growth. We have isolated and characterized PsPMEP, a pea (Pisum sativum L.) pollen-specific gene that encodes a protein with homology to PMEs. Sequence analysis showed that PsPMEP belongs to group 2 PMEs, which are characterized by the presence of a processable amino-terminal PME inhibitor domain followed by the catalytic PME domain. Moreover, PsPMEP contains several motifs highly conserved among PMEs with the essential amino acid residues involved in enzyme substrate binding and catalysis. Northern blot and in situ hybridization analyses showed that PsPMEP is expressed in pollen grains from 4 days before anthesis till anther dehiscence and in pollinated carpels. In the PsPMEP promoter region, we have identified several conserved cis-regulatory elements that have been associated with gene pollen-specific expression. Expression analysis of PsPMEP promoter fused to the uidA reporter gene in Arabidopsis thaliana plants showed a similar expression pattern when compared with pea, indicating that this promoter is also functional in a non-leguminous plant. GUS expression was detected in mature pollen grains, during pollen germination, during pollen tube elongation along the transmitting tract, and when the pollen tube reaches the embryo sac in the ovule.This work was funded by grants BIO2006-09374 and BIO2009-08134 from the Spanish Ministry of Science and Innovation (MICINN). The collaboration and assistance of Julia Marin-Navarro in the catalytic activity assays of PsPMEP in yeast and Rafael Martinez-Pardo in the greenhouse is gratefully acknowledged. We would like to thank the HAPRECI consortium (COST Action FA0903) to bring us the opportunity to collaborate with other European research groups working in the field of Plant Reproduction and to select our manuscript to be published in this special issue.GĂłmez JimĂ©nez, MD.; Renau Morata, B.; Roque Mesa, EM.; Polaina, J.; Beltran Porter, JP.; Cañas Clemente, LA. (2013). PsPMEP, a pollen specific pectin methylesterase of pea (Pisum sativum L.). Plant Reproduction. 26(3):245-254. https://doi.org/10.1007/s00497-013-0220-0S245254263Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci 316:1194–1199Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 233:736–745Camardella L (2000) Kiwi protein inhibitor of pectin methylesterase–amino-acid sequence and structural importance of two disulfide bridges. Eur J Biochem 267:4561–4565Carpenter JL, Ploense SE, Snustad DP, Silflow CD (1992) Preferential expression of an alpha-tubulin gene of Arabidopsis in pollen. Plant Cell 4:557–571Combet C, Blanchet C, Geourjon C, DelĂ©age G (2000) NPS@: network protein sequence analysis. Trend Biochem Sci 25:147–150De Almeida Engler J, Van Montagu M, Engler G (1998) Whole-mount in situ hybridization in plants. Methods Mol Biol (Clifton, NJ) 82:373–384De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G (2011) Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. Plant J 65(2):295–308Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013Futamura N, Mori H, Kouchi H, Shinohara K (2000) Male flower-specific expression of genes for polygalacturonase, pectin methylesterase and ÎČ-1,3-glucanase in a dioecious willow (Salix gilgliana Seemen). Plant Cell Physiol 41:16–26GarcĂ­a-Sogo B, Pineda B, Castelblanque L, AntĂłn T, Medina M, Roque E, Torresi C, BeltrĂĄn JP, Moreno V, Cañas LA (2010) Efficient transformation of Kalanchoe blossfeldiana and production of male sterile plants by engineered anther ablation. Plant Cell Rep 29:61–77GarcĂ­a-Sogo B, Pineda B, Roque E, AntĂłn T, AtarĂ©s A, Borja M, BeltrĂĄn JP, Moreno V, Cañas LA (2012) Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biol 12:156–162GĂłmez MD, BeltrĂĄn JP, Cañas LA (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta 219:967–981Gummadi SN, Manoj N, Kumar DS (2007) Structure and biochemical properties of pectinases. In: Polaina J, MacCabe AP (eds) Industrial enzymes: structure, function and applications. Springer, Berlin, pp 99–115. ISBN 9781402053764Gurgu L, Lafraya A, Polaina J, MarĂ­n-Navarro J (2011) Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the ÎČ-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresour Technol 102:5229–5236Hamilton DA, Schwarz YH, Mascarenhas JP (1998) A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol 38:663–669Hewitt EJ (1966) Hoagland No. 1 solution with oligoelements. In: Sand and water culture methods used in the study of plant nutrition, 2nd edn, Technical Communication No. 22. Commonwealth Agricultural Bureaux, Farnham Royal, EnglandHothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K (2004) Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell 16:3437–3447Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596Johansson K, El-Ahmad M, Friemann R, Jörnvall H, Markovic O, Eklund H (2002) Crystal structure of plant pectin methylesterase. FEBS Lett 514:243–249Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595Kononowicz AK, Nelson DE, Singh NK, Hasegawa PM, Bressan RA (1992) Regulation of the osmotin gene promoter. Plant Cell 4:513–524Li YQ, Mareck A, Faleric C, Moscatelli A, Liu Q, Cresti M (2002) Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 214:734–740MarĂ­n-Navarro J, Gurgu L, Alamar S, Polaina J (2011) Structural and functional analysis of hybrid enzymes generated by domain shuffling between Saccharomyces cerevisiae (var. diastaticus) Sta1 glucoamylase and Saccharomycopsis fibuligera Bgl1 ÎČ-glucosidase. Appl Microbiol Biotechnol 89:121–130Markovic O, Janecek S (2004) Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr Res 339:2281–2295Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419Mitsuda N, Takeyasu K, Sato MH (2001) Pollen-specific regulation of vacuolar H+-PPase expression by multiple cis-acting elements. Plant Mol Biol 46:185–192Okada T, Zhang Z, Russell RD, Toriyama K (1999) Localization of Bra r 1, a Ca2+-binding protein of Brassica rapa, in anthers and pollen tubes. Plant Cell Physiol 40:1243–1252Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. Bio Syst 109:397–402Pelloux J, RustĂ©rucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277PistĂłn F, GarcĂ­a C, de la Viña G, BeltrĂĄn JP, Cañas LA, Barro F (2008) The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspores stage and during pollen tube development. Mol Breed 21:401–405Qiu X, Erickson L (1995) A pollen-specific cDNA (P65, accession no. U28148) encoding a putative pectin esterase in alfalfa (PGR95-094). Plant Physiol 109:1127RodrĂ­guez-Llorente ID, PĂ©rez-Hormaeche J, El Mounadi K, Dary M, Caviedes MA, Cosson V, Kondorosi A, Ratet P, Palomares AJ (2004) From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. Plant J 39:587–598Roque E, GĂłmez MD, Ellull P, Wallbraun M, Madueño F, BeltrĂĄn JP, Cañas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325Sambrook J, Fritsch EF, Maniatis T (1989) Hybridization of radiolabeled probes to immobilized nucleic acids. In: Ford N, Nolan C, Ferguson M (eds) Molecular cloning: a laboratory manual, 2nd edn, chap 9. Cold Spring Harbor Laboratory Press, New York, USA, pp 47–48Scognamiglio MA, Ciardiello MA, Tamburrini M, Carratore V, Rausch T, Camardella L (2003) The plant invertase inhibitor shares structural properties and disulfide bridges arrangement with the pectin methylesterase inhibitor. J Protein Chem 22:363–369Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599Tang W, Perry SE (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem 278:28154–28159Tian G-W, Chen M-H, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91Twell D, Klein TM, Fromm ME, McCormick S (1989) Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol 91:1270–1274Twell D, Yamaguchi J, McCormick S (1990) Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109:705–713Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are co-ordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507Wakeley PR, Rogers HJ, Rozychk M, Greenland AJ, Hussey PJ (1998) A maize pectin methylesterase-gene, ZmC5, specifically expressed in pollen. Plant Mol Biol 37:187–192Wen F, Zhu Y, Hawes MC (1999) Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11:1129–1140Weterings K, Schrauwen J, Wullems G, Twell D (1995) Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J 8:55–63Wolf S, Rausch T, Greiner S (2009) The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus. Plant J 58:361–375Woriedh M, Wolf S, MĂĄrton ML, Hinze A, Gahrtz M, Becker D, Dresselhaus T (2013) External application of gametophyte-specific ZmPMEI1 induces pollen tube burst in maize. Plant Reprod. doi: 10.1007/s00497-013-0221-zZhu C, Perry SE (2005) Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J 41:583–59

    Preventive dietary supplements of chitin and yeast wall in gilthead seabream

    Get PDF
    To determine the immunomodulatory effect of the dietary intake of commercial chitin and yeast cell walls in gilthead seabream, Sparus auratus Linnaeus, 1758, specimens were fed diets containing different concentrations of chitin or yeast cell walls for 1, 2, 4 or 6 weeks. Subsequently, their main humoral (lysozyme and complement activities) and cellular (respiratory burst, phagocytic and citotoxic activities) immune responses were analysed. Our results show an increase in most of these immune parameters after 2 weeks of administration, suggesting that specimens fed such supplemented diets would be better prepared to confront an unfavourable situation (infection or stress).Se ha estudiado el efecto de la quitina comercial y de paredes de levadura suministradas en dieta sobre el sistema inmunitario de ejemplares de dorada, Sparus auratus Linnaeus, 1758, sometidos a engorde. Tras 1, 2, 4 y 6 semanas de suministro de dichas dietas, los ejemplares fueron sacrificados y se estudiaron las principales actividades humorales (actividad de la lisozima y del complemento) y celulares (explosión respiratoria, fagocitosis y citotoxicidad) de su sistema inmunitario inespecífico. Los resultados obtenidos indican que, tras dos semanas de suministro de dichas dietas, se observa un incremento de la mayoría de las variables del sistema inmunitario controladas. Esta situación hace prever que los ejemplares estån mejor preparados para enfrentarse a una situación desfavorable (infección o estrés).Instituto Español de Oceanografí

    Microbial ÎČ-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail

    No full text
    Background A complete saccharification of plant polymers is the critical step in the efficient production of bio-alcohols. Beta-glucosidases acting in the degradation of intermediate gluco-oligosaccharides produced by cellulases limit the yield of the final product. Results In the present work, we have identified and then successfully cloned, expressed, purified and characterised 4 highly active beta-glucosidases from fibre-adherent microbial community from the cow rumen. The enzymes were most active at temperatures 45–55°C and pH 4.0-7.0 and exhibited high affinity and activity towards synthetic substrates such as p-nitrophenyl-beta-D-glucopyranoside (p NPbetaG) and p NP-beta-cellobiose, as well as to natural cello-oligosaccharides ranging from cellobiose to cellopentaose. The apparent capability of the most active beta-glucosidase, herein named LAB25g2, was tested for its ability to improve, at low dosage (31.25 units g-1 dry biomass, using p NPbetaG as substrate), the hydrolysis of pre-treated corn stover (dry matter content of 20%; 350 g glucan kg-1 dry biomass) in combination with a beta-glucosidase-deficient commercial Trichoderma reseei cellulase cocktail (5 units g-1 dry biomass in the basis of p NPbetaG). LAB25g2 increased the final hydrolysis yield by a factor of 20% (44.5 ± 1.7% vs. 34.5 ± 1.5% in control conditions) after 96–120 h as compared to control reactions in its absence or in the presence of other commercial beta-glucosidase preparations. The high stability (half-life higher than 5 days at 50°C and pH 5.2) and 2–38000 fold higher (as compared with reported beta-glucosidases) activity towards cello-oligosaccharides may account for its performance in supplementation assays. Conclusions The results suggest that beta-glucosidases from yet uncultured bacteria from animal digestomes may be of a potential interest for biotechnological processes related to the effective bio-ethanol production in combination with low dosage of commercial cellulases

    Microbial ÎČ-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail

    Get PDF
    BACKGROUND: A complete saccharification of plant polymers is the critical step in the efficient production of bio-alcohols. Beta-glucosidases acting in the degradation of intermediate gluco-oligosaccharides produced by cellulases limit the yield of the final product. RESULTS: In the present work, we have identified and then successfully cloned, expressed, purified and characterised 4 highly active beta-glucosidases from fibre-adherent microbial community from the cow rumen. The enzymes were most active at temperatures 45–55°C and pH 4.0-7.0 and exhibited high affinity and activity towards synthetic substrates such as p-nitrophenyl-beta-D-glucopyranoside (pNPbetaG) and pNP-beta-cellobiose, as well as to natural cello-oligosaccharides ranging from cellobiose to cellopentaose. The apparent capability of the most active beta-glucosidase, herein named LAB25g2, was tested for its ability to improve, at low dosage (31.25 units g(-1) dry biomass, using pNPbetaG as substrate), the hydrolysis of pre-treated corn stover (dry matter content of 20%; 350 g glucan kg(-1) dry biomass) in combination with a beta-glucosidase-deficient commercial Trichoderma reseei cellulase cocktail (5 units g(-1) dry biomass in the basis of pNPbetaG). LAB25g2 increased the final hydrolysis yield by a factor of 20% (44.5 ± 1.7% vs. 34.5 ± 1.5% in control conditions) after 96–120 h as compared to control reactions in its absence or in the presence of other commercial beta-glucosidase preparations. The high stability (half-life higher than 5 days at 50°C and pH 5.2) and 2–38000 fold higher (as compared with reported beta-glucosidases) activity towards cello-oligosaccharides may account for its performance in supplementation assays. CONCLUSIONS: The results suggest that beta-glucosidases from yet uncultured bacteria from animal digestomes may be of a potential interest for biotechnological processes related to the effective bio-ethanol production in combination with low dosage of commercial cellulases

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Cloning of the STA

    No full text

    Purification and characterization of a Bacillus polymyxa beta-glucosidase expressed in Escherichia coli.

    No full text
    The beta-glucosidase encoded by the bglA gene from Bacillus polymyxa was overproduced in Escherichia coli by using a plasmid in which bglA is under control of the lacI promoter. Induction with isopropyl-beta-D-thiogalactopyranoside allowed an increase in the specific activity of the enzyme of about 100 times the basal level of gene expression. The enzyme was purified by a two-step procedure involving salting out with ammonium sulfate and ion-exchange chromatography with DEAE-cellulose. Fractions of beta-glucosidase activity recovered by this procedure, after electrophoresis in an acrylamide gel and staining with silver nitrate, yielded a single band of protein. This band was shown by a zymogram to correspond to beta-glucosidase activity. The purified protein showed an apparent molecular mass of 50 kDa and an isoelectric point of 4.6, values in agreement with those expected from the nucleotide sequence of the gene. Km values of the enzyme, with either cellobiose or p-nitrophenyl-beta-D-glucoside as the substrate, were determined. It was shown that the enzyme is competitively inhibited by glucose. The effects of different metallic ions and other agents were studied. Hg2+ was strongly inhibitory, while none of the other cations tested had any significant effect. Ethanol did not show the stimulating effect observed with other beta-glucosidases. The mechanism of enzyme action was investigated. High-pressure liquid chromatography analysis with cellobiose as the substrate confirmed previous data revealing the formation of two products, glucose and another, unidentified, compound. Results presented here indicate that this compound is cellotriose formed by transglycosylation
    • 

    corecore