200 research outputs found

    The academic backbone: longitudinal continuities in educational achievement from secondary school and medical school to MRCP(UK) and the specialist register in UK medical students and doctors

    Get PDF
    Background: Selection of medical students in the UK is still largely based on prior academic achievement, although doubts have been expressed as to whether performance in earlier life is predictive of outcomes later in medical school or post-graduate education. This study analyses data from five longitudinal studies of UK medical students and doctors from the early 1970s until the early 2000s. Two of the studies used the AH5, a group test of general intelligence (that is, intellectual aptitude). Sex and ethnic differences were also analyzed in light of the changing demographics of medical students over the past decades. Methods: Data from five cohort studies were available: the Westminster Study (began clinical studies from 1975 to 1982), the 1980, 1985, and 1990 cohort studies (entered medical school in 1981, 1986, and 1991), and the University College London Medical School (UCLMS) Cohort Study (entered clinical studies in 2005 and 2006). Different studies had different outcome measures, but most had performance on basic medical sciences and clinical examinations at medical school, performance in Membership of the Royal Colleges of Physicians (MRCP(UK)) examinations, and being on the General Medical Council Specialist Register. Results: Correlation matrices and path analyses are presented. There were robust correlations across different years at medical school, and medical school performance also predicted MRCP(UK) performance and being on the GMC Specialist Register. A-levels correlated somewhat less with undergraduate and post-graduate performance, but there was restriction of range in entrants. General Certificate of Secondary Education (GCSE)/O-level results also predicted undergraduate and post-graduate outcomes, but less so than did A-level results, but there may be incremental validity for clinical and post-graduate performance. The AH5 had some significant correlations with outcome, but they were inconsistent. Sex and ethnicity also had predictive effects on measures of educational attainment, undergraduate, and post-graduate performance. Women performed better in assessments but were less likely to be on the Specialist Register. Non-white participants generally underperformed in undergraduate and post-graduate assessments, but were equally likely to be on the Specialist Register. There was a suggestion of smaller ethnicity effects in earlier studies. Conclusions: The existence of the Academic Backbone concept is strongly supported, with attainment at secondary school predicting performance in undergraduate and post-graduate medical assessments, and the effects spanning many years. The Academic Backbone is conceptualized in terms of the development of more sophisticated underlying structures of knowledge ('cognitive capital’ and 'medical capital’). The Academic Backbone provides strong support for using measures of educational attainment, particularly A-levels, in student selection

    SUMOylation by Pias1 Regulates the Activity of the Hedgehog Dependent Gli Transcription Factors

    Get PDF
    Hedgehog (Hh) signaling, a vital signaling pathway for the development and homeostasis of vertebrate tissues, is mediated by members of the Gli family of zinc finger transcription factors. Hh signaling increases the transcriptional activity of Gli proteins, at least in part, by inhibiting their proteolytic processing. Conversely, phosphorylation by cAMP-dependent protein kinase (PKA) inhibits Gli transcriptional activity by promoting their ubiquitination and proteolysis. Whether other post-translational modifications contribute to the regulation of Gli protein activity has been unclear.Here we provide evidence that all three Gli proteins are targets of small ubiquitin-related modifier (SUMO)-1 conjugation. Expression of SUMO-1 or the SUMO E3 ligase, Pias1, increased Gli transcriptional activity in cultured cells. Moreover, PKA activity reduced Gli protein SUMOylation. Strikingly, in the embryonic neural tube, the forced expression of Pias1 increased Gli activity and induced the ectopic expression of the Gli dependent gene Nkx2.2. Conversely, a point mutant of Pias1, that lacks ligase activity, blocked the endogenous expression of Nkx2.2.Together, these findings provide evidence that Pias1-dependent SUMOylation influences Gli protein activity and thereby identifies SUMOylation as a post-translational mechanism that regulates the hedgehog signaling pathway

    Coordinated Translocation of Mammalian Gli Proteins and Suppressor of Fused to the Primary Cilium

    Get PDF
    Intracellular transduction of Hedgehog (Hh) signals in mammals requires functional primary cilia. The Hh signaling effectors, the Gli family of transcription factors, and their negative regulator, Suppressor of Fused (Sufu), accumulate at the tips of cilia; however, the molecular mechanism regulating this localization remains elusive. In the current study, we show that the ciliary localization of mammalian Gli proteins depends on both their N-terminal domains and a central region lying C-terminal to the zinc-finger DNA-binding domains. Invertebrate Gli homologs Ci and Tra1, when over-expressed in ciliated mouse fibroblasts, fail to localize to the cilia, suggesting the lack of a vertebrate-specific structural feature required for ciliary localization. We further show that activation of protein kinase A (PKA) efficiently inhibits ciliary localization of Gli2 and Gli3, but only moderately affects the ciliary localization of Gli1. Interestingly, variants of Gli2 mimicking the phosphorylated or non-phosphorylated states of Gli2 are both localized to the cilia, and their ciliary localizations are subjected to the inhibitory effect of PKA activation, suggesting a likely indirect mechanism underlying the roles of PKA in Gli ciliary localization. Finally, we show that ciliary localization of Sufu is dependent on ciliary-localized Gli proteins, and is inhibited by PKA activation, suggesting a coordinated mechanism for the ciliary translocation of Sufu and Gli proteins

    Diversity, Phylogeny and Expression Patterns of Pou and Six Homeodomain Transcription Factors in Hydrozoan Jellyfish Craspedacusta sowerbyi

    Get PDF
    Formation of all metazoan bodies is controlled by a group of selector genes including homeobox genes, highly conserved across the entire animal kingdom. The homeobox genes from Pou and Six classes are key members of the regulation cascades determining development of sensory organs, nervous system, gonads and muscles. Besides using common bilaterian models, more attention has recently been targeted at the identification and characterization of these genes within the basal metazoan phyla. Cnidaria as a diploblastic sister group to bilateria with simple and yet specialized organs are suitable models for studies on the sensory organ origin and the associated role of homeobox genes. In this work, Pou and Six homeobox genes, together with a broad range of other sensory-specific transcription factors, were identified in the transcriptome of hydrozoan jellyfish Craspedacusta sowerbyi. Phylogenetic analyses of Pou and Six proteins revealed cnidarian-specific sequence motifs and contributed to the classification of individual factors. The majority of the Craspedacusta sowerbyi Pou and Six homeobox genes are predominantly expressed in statocysts, manubrium and nerve ring, the tissues with sensory and nervous activities. The described diversity and expression patterns of Pou and Six factors in hydrozoan jellyfish highlight their evolutionarily conserved functions. This study extends the knowledge of the cnidarian genome complexity and shows that the transcriptome of hydrozoan jellyfish is generally rich in homeodomain transcription factors employed in the regulation of sensory and nervous functions

    The timing of basaltic volcanism at the Apollo landing sites

    Get PDF
    Precise crystallisation ages have been determined for a range of Apollo basalts from Pb-Pb isochrons generated using Secondary Ion Mass Spectrometry (SIMS) analyses of multiple accessory phases including K-feldspar, K-rich glass and phosphates. The samples analysed in this study include five Apollo 11 high-Ti basalts, one Apollo 14 high-Al basalt, seven Apollo 15 low-Ti basalts, and five Apollo 17 high-Ti basalts. Together with the samples analysed in two previous similar studies, Pb-Pb isochron ages have been determined for all of the major basaltic suites sampled during the Apollo missions. The accuracy of these ages has been assessed as part of a thorough review of existing age determinations for Apollo basalts, which reveals a good agreement with previous studies of the same samples, as well as with average ages that have been calculated for the emplacement of the different basaltic suites at the Apollo landing sites. Furthermore, the precision of the new age determinations helps to resolve distinctions between the ages of different basaltic suites in more detail than was previously possible. The proposed ages for the basaltic surface flows at the Apollo landing sites have been reviewed in light of these new sample ages. Finally, the data presented here have also been used to constrain the initial Pb isotopic compositions of the mare basalts, which indicate a significant degree of heterogeneity in the lunar mantle source regions, even among the basalts collected at individual landing sites
    corecore