697 research outputs found
Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks
A vapour-phase reaction process has been used to deposit smooth and uniform CH3NH3PbI3 perovskite material to enable the measurement of its optical dispersion relations, n and k, by ellipsometry. Fitting was achieved with a combination of Tauc-Lorenz, critical point parabolic band (CPPB) and harmonic oscillators. We have used the dispersion relations in an all-optical model of new planar device architectures in order to establish design rules for future materials choices to maximize the short-circuit current (Jsc) performance. For 500nm of MAPI with no window layer, the maximum performance expected from the model is Jsc=21.63mAcm-2. The ability of thin layers (in the range 20-60nm) of a range of window layer materials (TiO2, WO3, ZnO, Nb2O5, CdS, and Cd0.4 Zn0.6S) to enhance the short-circuit current of the devices was investigated. The performance of the oxides showed interference behaviour, with the first maxima in their J sc curves exceeding the value achievable without a window layer. However, after the first maximum, the performance generally fell off with increasing thickness. The only material to stay greater than the no-window condition for the entire investigated range is WO3. The highest performance (J sc of 22.47mAcm-2) was obtained with 59nm of WO3, with that of TiO2, ZnO, and Nb2O5 being marginally lower. Parasitic absorption in CdS window layers caused the J sc to decrease for all non-zero thicknesses - it gives no interference enhancement and its use cannot be recommended on optical grounds. Use of the wider gap alloy Cd0.4Zn0.6S gave higher currents than did CdS but its performance was not so high as for the oxides. Observations are made on the practicalities of fabricating the target structures in the fabrication of practical PV devices
Conformal Bulk Fields, Dark Energy and Brane Dynamics
In the Randall-Sundrum scenario we analyze the dynamics of a spherically
symmetric 3-brane when the bulk is filled with matter fields. Considering a
global conformal transformation whose factor is the symmetric warp we
find a new set of exact dynamical solutions for which gravity is bound to the
brane. The set corresponds to a certain class of conformal bulk fields. We
discuss the geometries which describe the dynamics on the brane of polytropic
dark energy.Comment: 12 pages, latex, 2 figures. Talk given by Rui Neves at the Fourth
International Conference on Physics Beyond the Standard Model, Beyond the
Desert 03, Fundamental Experimental and Theoretical Developments in Particle
Physics, Accelerator, Non-Accelerator and Space Approaches, Max Planck
Institut f. Kernphysik/MPI Heidelberg, Castle Ringberg, Tegernsee, Germany,
9-14 June 2003. To be published in the Conference Proceedings,
Springer-Verlag, Heidelberg, German
Exploring pig trade patterns to inform the design of risk-based disease surveillance and control strategies
An understanding of the patterns of animal contact networks provides essential information for the design of risk-based animal disease surveillance and control strategies. This study characterises pig movements throughout England and Wales between 2009 and 2013 with a view to characterising spatial and temporal patterns, network topology and trade communities. Data were extracted from the Animal and Plant Health Agency (APHA)’s RADAR (Rapid Analysis and Detection of Animal-related Risks) database, and analysed using descriptive and network approaches. A total of 61,937,855 pigs were moved through 872,493 movements of batches in England and Wales during the 5-year study period. Results show that the network exhibited scale-free and small-world topologies, indicating the potential for diseases to quickly spread within the pig industry. The findings also provide suggestions for how risk-based surveillance strategies could be optimised in the country by taking account of highly connected holdings, geographical regions and time periods with the greatest number of movements and pigs moved, as these are likely to be at higher risk for disease introduction. This study is also the first attempt to identify trade communities in the country, information which could be used to facilitate the pig trade and maintain disease-free status across the country in the event of an outbreak
The Harvey–Bradshaw Index adapted to a mobile application compared with In-clinic assessment: the MediCrohn Study
[Abstract]
Objectives: Mobile apps are useful tools in e-health and self-management strategies in disease monitoring. We evaluated the Harvey–Bradshaw index (HBI) mobile app self-administered by the patient to see if its results agreed with HBI in-clinic assessed by a physician.
Methods: Patients were enrolled in a 4-month prospective study with clinical assessments at months 1 and 4. Patients completed mobile app HBI and within 48 h, HBI was performed by a physician (gold standard). HBI scores characterized Crohn's disease (CD) as remission <5 or active ≥5. We determined agreement per item and total HBI score and intraclass correlation coefficients (ICCs). Bland–Altman plot was performed. HBI changes in disease activity from month 1 to month 4 were determined.
Results: A total of 219 patients were enrolled. All scheduled assessments (385 pairs of the HBI questionnaire) showed a high percentage of agreement for remission/activity (92.4%, κ = 0.796), positive predictive value (PPV) for remission of 98.2%, and negative predictive value of 76.7%. High agreement was also found at month 1 (93.15%, κ = 0.82) and month 4 (91.5%, κ = 0.75). Bland–Altman plot was more uniform when the HBI mean values were <5 (remission). ICC values were 0.82, 0.897, and 0.879 in all scheduled assessments, 1 and 4 months, respectively.
Conclusions: We found a high percentage of agreement between patients' self-administered mobile app HBI and in-clinic physician assessment to detect CD activity with a remarkably high PPV for remission. The mobile app HBI might allow a strict control of inflammation by remote monitoring and flexible follow-up of CD patients. Reduction of sanitary costs could be possible
State of the Art in Building Façades
This chapter presents a portfolio of building materials suitable for facades. It describes the relationship between material type, building element, facade, and the entire building structure. Traditional facades based on static components, as well as adaptive concepts able to interact with changing environmental conditions, are briefly described and illustrated with pictures. Climatic design principles, biomimicry, and bioinspiration in architecture are introduced with the purpose of inspiring future developments
Development and international validation of custom-engineered and code-free deep-learning models for detection of plus disease in retinopathy of prematurity: a retrospective study.
BACKGROUND: Retinopathy of prematurity (ROP), a leading cause of childhood blindness, is diagnosed through interval screening by paediatric ophthalmologists. However, improved survival of premature neonates coupled with a scarcity of available experts has raised concerns about the sustainability of this approach. We aimed to develop bespoke and code-free deep learning-based classifiers for plus disease, a hallmark of ROP, in an ethnically diverse population in London, UK, and externally validate them in ethnically, geographically, and socioeconomically diverse populations in four countries and three continents. Code-free deep learning is not reliant on the availability of expertly trained data scientists, thus being of particular potential benefit for low resource health-care settings. METHODS: This retrospective cohort study used retinal images from 1370 neonates admitted to a neonatal unit at Homerton University Hospital NHS Foundation Trust, London, UK, between 2008 and 2018. Images were acquired using a Retcam Version 2 device (Natus Medical, Pleasanton, CA, USA) on all babies who were either born at less than 32 weeks gestational age or had a birthweight of less than 1501 g. Each images was graded by two junior ophthalmologists with disagreements adjudicated by a senior paediatric ophthalmologist. Bespoke and code-free deep learning models (CFDL) were developed for the discrimination of healthy, pre-plus disease, and plus disease. Performance was assessed internally on 200 images with the majority vote of three senior paediatric ophthalmologists as the reference standard. External validation was on 338 retinal images from four separate datasets from the USA, Brazil, and Egypt with images derived from Retcam and the 3nethra neo device (Forus Health, Bengaluru, India). FINDINGS: Of the 7414 retinal images in the original dataset, 6141 images were used in the final development dataset. For the discrimination of healthy versus pre-plus or plus disease, the bespoke model had an area under the curve (AUC) of 0·986 (95% CI 0·973-0·996) and the CFDL model had an AUC of 0·989 (0·979-0·997) on the internal test set. Both models generalised well to external validation test sets acquired using the Retcam for discriminating healthy from pre-plus or plus disease (bespoke range was 0·975-1·000 and CFDL range was 0·969-0·995). The CFDL model was inferior to the bespoke model on discriminating pre-plus disease from healthy or plus disease in the USA dataset (CFDL 0·808 [95% CI 0·671-0·909, bespoke 0·942 [0·892-0·982]], p=0·0070). Performance also reduced when tested on the 3nethra neo imaging device (CFDL 0·865 [0·742-0·965] and bespoke 0·891 [0·783-0·977]). INTERPRETATION: Both bespoke and CFDL models conferred similar performance to senior paediatric ophthalmologists for discriminating healthy retinal images from ones with features of pre-plus or plus disease; however, CFDL models might generalise less well when considering minority classes. Care should be taken when testing on data acquired using alternative imaging devices from that used for the development dataset. Our study justifies further validation of plus disease classifiers in ROP screening and supports a potential role for code-free approaches to help prevent blindness in vulnerable neonates. FUNDING: National Institute for Health Research Biomedical Research Centre based at Moorfields Eye Hospital NHS Foundation Trust and the University College London Institute of Ophthalmology. TRANSLATIONS: For the Portuguese and Arabic translations of the abstract see Supplementary Materials section
Consistent approximation of epidemic dynamics on degree-heterogeneous clustered networks
Realistic human contact networks capable of spreading infectious disease, for example studied in social contact surveys, exhibit both significant degree heterogeneity and clustering, both of which greatly affect epidemic dynamics. To understand the joint effects of these two network properties on epidemic dynamics, the effective degree model of Lindquist et al. [28] is reformulated with a new moment closure to apply to highly clustered networks. A simulation study comparing alternative ODE models and stochastic simulations is performed for SIR (Susceptible–Infected–Removed) epidemic dynamics, including a test for the conjectured error behaviour in [40], providing evidence that this novel model can be a more accurate approximation to epidemic dynamics on complex networks than existing approaches
- …