1,544 research outputs found
Training load monitoring in team sports: A novel framework separating physiological and biomechanical load-adaptation pathways
There have been considerable advances in monitoring the training load in running-based team sports in recent years. Novel technologies nowadays offer ample opportunities to continuously monitor the activities of a player. These activities lead to internal biochemical stresses on the various physiological sub-systems. However, they also cause internal mechanical stresses on the various musculoskeletal tissues. Based on the amount and periodization of these stresses, the sub-systems and tissues adapt. So by monitoring external loads one hopes to estimate internal loads to predict adaptation, and this through understanding the load-adaptation pathways. We propose a new theoretical framework in which physiological and biomechanical load-adaptation pathways are considered separately, shedding a new light on some of the previously published evidence. We hope that it can help the various practitioners in this field (trainers, coaches, medical staff, sport scientists) to align their thoughts when considering the value of monitoring load, and that it can help researchers design experiments that can better rationalise training load monitoring for improving performance whilst preventing injury
The EU and Asia within an evolving global order: what is Europe? Where is Asia?
The papers in this special edition are a very small selection from those presented at the EU-NESCA (Network of European Studies Centres in Asia) conference on "the EU and East Asia within an Evolving Global Order: Ideas, Actors and Processes" in November 2008 in Brussels. The conference was the culmination of three years of research activity involving workshops and conferences bringing together scholars from both regions primarily to discuss relations between Europe and Asia, perceptions of Europe in Asia, and the relationship between the European regional project and emerging regional forms in Asia. But although this was the last of the three major conferences organised by the consortium, it in many ways represented a starting point rather than the end; an opportunity to reflect on the conclusions of the first phase of collaboration and point towards new and continuing research agendas for the future
The relationship between whole-body external loading and body-worn accelerometry during team sports movements
Purpose: The aim of this study was to investigate the relationship between whole-body accelerations and body-worn accelerometry during team sports movements. Methods: Twenty male team sport players performed forward running, and anticipated 45° and 90° side-cuts at approach speeds of 2, 3, 4 and 5 m·s-1. Whole-body Centre of Mass (CoM) accelerations were determined from ground reaction forces collected from one foot-ground-contact and segmental accelerations were measured from a commercial GPS/accelerometer unit on the upper trunk. Three higher specification accelerometers were also positioned on the GPS unit, the dorsal aspect of the pelvis, and the shaft of the tibia. Associations between mechanical load variables (peak acceleration, loading rate and impulse) calculated from both CoM accelerations and segmental accelerations were explored using regression analysis. In addition one-dimensional Statistical Parametric Mapping (SPM) was used to explore the relationships between peak segmental accelerations and CoM acceleration profiles during the whole foot-ground-contact. Results: A weak relationship was observed for the investigated mechanical load variables regardless of accelerometer location and task (R2 values across accelerometer locations and tasks: peak acceleration 0.08-0.55, loading rate 0.27-0.59 and impulse 0.02-0.59). Segmental accelerations generally overestimated whole-body mechanical load. SPM analysis showed that peak segmental accelerations were mostly related to CoM accelerations during the first 40-50% of contact phase. Conclusions: Whilst body-worn accelerometry correlates to whole-body loading in team sports movements and can reveal useful estimates concerning loading, these correlations are not strong. Body-worn acclerometry should therefore be used with caution to monitor whole-body mechanical loading in the field
The dynamics of single spike-evoked adenosine release in the cerebellum
The purine adenosine is a potent neuromodulator in the brain, with roles in a number
of diverse physiological and pathological processes. Modulators such as adenosine are difficult
to study as once released they have a diffuse action (which can affect many neurones) and,
unlike classical neurotransmitters, have no inotropic receptors. Thus rapid postsynaptic currents
(PSCs) mediated by adenosine (equivalent to mPSCs) are not available for study. As a result
the mechanisms and properties of adenosine release still remain relatively unclear. We have
studied adenosine release evoked by stimulating the parallel fibres in the cerebellum. Using
adenosine biosensors combined with deconvolution analysis and mathematical modelling, we
have characterised the release dynamics and diffusion of adenosine in unprecedented detail.
By partially blocking K+ channels, we were able to release adenosine in response to a single
stimulus rather than a train of stimuli. This allowed reliable sub-second release of reproducible
quantities of adenosine with stereotypic concentration waveforms that agreed well with predictions
of a mathematical model of purine diffusion. We found no evidence for ATP release
and thus suggest that adenosine is directly released in response to parallel fibre firing and does
not arise from extracellular ATP metabolism. Adenosine release events showed novel short-term
dynamics, including facilitated release with paired stimuli at millisecond stimulation intervals
but depletion-recovery dynamics with paired stimuli delivered over minute time scales. These
results demonstrate rich dynamics for adenosine release that are placed, for the first time, on a
quantitative footing and show strong similarity with vesicular exocytosis
Thermal stress induces glycolytic beige fat formation via a myogenic state.
Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival
The effect of temperature, gradient and load carriage on oxygen consumption, posture and gait characteristics
Purpose The purpose of this experiment was to evaluate the effect of load carriage in a range of temperatures to establish the interaction between cold exposure, the magnitude of change from unloaded to loaded walking and gradient. Methods Eleven participants (19-27 years) provided written informed consent before performing six randomly ordered walking trials in six temperatures (20°C, 10°C, 5°C, 0°C, -5°C and -10°C). Trials involved two unloaded walking bouts before and after loaded walking (18.2 kg) at 4 km.hr⁻¹, on 0% and 10% gradients in 4 minute bouts. Results The change in absolute oxygen consumption (V̇O₂) from the first unloaded bout to loaded walking was similar across all six temperatures. When repeating the second unloaded bout, V̇O₂ at both -5°C and-10°C was greater compared to the first. At -10°C, V̇O₂ was increased from 1.60 ± 0.30 L.min⁻¹ to 1.89 ± 0.51 L.min⁻¹. Regardless of temperature, gradient had a greater effect on V̇O₂ and heart rate (HR) than backpack load. HR was unaffected by temperature. Stride length (SL) decreased with decreasing temperature but trunk forward lean was greater during cold exposure. Conclusion Decreased ambient temperature did not influence the magnitude of change in V̇O₂ from unloaded to loaded walking. However, in cold temperatures, V̇O₂ was significantly higher than in warm conditions. The increased V̇O₂ in colder temperatures at the same exercise intensity is predicted to ultimately lead to earlier onset of fatigue and cessation of exercise. These results highlight the need to consider both appropriate clothing and fitness during cold exposure
Disentangling astroglial physiology with a realistic cell model in silico
Electrically non-excitable astroglia take up neurotransmitters, buffer extracellular K+ and generate Ca2+ signals that release molecular regulators of neural circuitry. The underlying machinery remains enigmatic, mainly because the sponge-like astrocyte morphology has been difficult to access experimentally or explore theoretically. Here, we systematically incorporate multi-scale, tri-dimensional astroglial architecture into a realistic multi-compartmental cell model, which we constrain by empirical tests and integrate into the NEURON computational biophysical environment. This approach is implemented as a flexible astrocyte-model builder ASTRO. As a proof-of-concept, we explore an in silico astrocyte to evaluate basic cell physiology features inaccessible experimentally. Our simulations suggest that currents generated by glutamate transporters or K+ channels have negligible distant effects on membrane voltage and that individual astrocytes can successfully handle extracellular K+ hotspots. We show how intracellular Ca2+ buffers affect Ca2+ waves and why the classical Ca2+ sparks-and-puffs mechanism is theoretically compatible with common readouts of astroglial Ca2+ imaging
ADAMTS -1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes
ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) enzymes are a recently described group of metalloproteinases. The substrates degraded by ADAMTS-1, -4 and -5 suggests that they play a role in turnover of extracellular matrix in the central nervous system (CNS). ADAMTS-1 is also known to exhibit anti-angiogenic activity. Their main endogenous inhibitor is tissue inhibitor of metalloproteinases (TIMP)-3.
The present study was designed to investigate ADAMTS-1, -4 and -5 and TIMP-3 expression after experimental cerebral ischaemia and to examine whether cytokines known to be up-regulated in stroke could alter their expression by astrocytes in vitro. Focal cerebral ischaemia was induced by transient middle cerebral artery occlusion in the rat using the filament method.
Our results demonstrate a significant increase in expression of ADAMTS-1 and -4 in the occluded hemisphere but no significant change in TIMP-3. This was accompanied by an increase in mRNA levels for interleukin (IL)-1, IL-1 receptor antagonist (IL-1ra) and tumour necrosis factor (TNF). ADAMTS-4 mRNA and protein was up-regulated by TNF in primary human astrocyte cultures. The increased ADAMTS-1 and -4 in experimental stroke, together with no change in TIMP-3, may promote ECM breakdown after stroke, enabling infiltration of inflammatory cells and contribute to brain injury. In vitro studies suggest that the in vivo modulation of ADAMTS-1 and -4 may be controlled in part by TNF.</p
Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow
We review modeling of astrocyte ion dynamics with a specific focus on the
implications of so-called spatial potassium buffering, where excess potassium
in the extracellular space (ECS) is transported away to prevent pathological
neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for
modeling ion dynamics in astrocytes (and brain tissue in general) is outlined
and used to study such spatial buffering. We next describe how the ion dynamics
of astrocytes may regulate microscopic liquid flow by osmotic effects and how
such microscopic flow can be linked to whole-brain macroscopic flow. We thus
include the key elements in a putative multiscale theory with astrocytes
linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure
- …
