580 research outputs found

    Generation of angular-momentum-dominated electron beams from a photoinjector

    Get PDF
    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam

    30% land conservation and climate action reduces tropical extinction risk by more than 50%

    Get PDF
    Limiting climate change to less than 2°C is the focus of international policy under the climate convention (UNFCCC), and is essential to preventing extinctions, a focus of the Convention on Biological Diversity (CBD). The post‐2020 biodiversity framework drafted by the CBD proposes conserving 30% of both land and oceans by 2030. However, the combined impact on extinction risk of species from limiting climate change and increasing the extent of protected and conserved areas has not been assessed. Here we create conservation spatial plans to minimize extinction risk in the tropics using data on 289 219 species and modeling two future greenhouse gas concentration pathways (RCP2.6 and 8.5) while varying the extent of terrestrial protected land and conserved areas from <17% to 50%. We find that limiting climate change to 2°C and conserving 30% of terrestrial area could more than halve aggregate extinction risk compared with uncontrolled climate change and no increase in conserved area

    Tuning the binding affinity and selectivity of perfluoroaryl-stapled peptides by cysteine-editing.

    Get PDF
    A growing number of approaches to 'staple' α-helical peptides into a bioactive conformation using cysteine cross-linking are emerging. Here we explore the replacement of L-cysteine with 'cysteine analogues' in combinations of different stereochemistry, side chain length and beta-carbon substitution, to examine the influence that the thiol-containing residue(s) has on target protein-binding affinity in a well explored model system, p53-MDM2/MDMX. In some cases, replacement of one or more L-cysteine residues afforded significant changes in the measured binding affinity and target selectivity of the peptide. Computationally constructed homology models indicate that some modifications, such as incorporating two D-cysteines favourably alter the positions of key functional amino acid side chains, which is likely to cause changes in binding affinity, in agreement with measured SPR data
    corecore