1,512 research outputs found

    Thiomicrospira kuenenii sp. nov., and Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat

    Get PDF
    Two new members of the genus Thiomicrospira were isolated from an intertidal mud flat sample with thiosulfate as the electron donor and CO2 as carbon source. On the basis of differences in genotypic and phenotypic characteristics, it is proposed that strain JB-A1(T) (= DSM 12350(T)) and strain JB-A2(T) (= DSM 12351(T)) are members of two new species, Thiomicrospira kuenenii and Thiomicrospira frisia, respectively. The cells were Gram-negative vibrios or slightly bent rods. Strain JB-A1(T) was highly motile, whereas strain JB-A2(T) showed a much lower degree of motility combined with a strong tendency to form aggregates. Both organisms were obligately autotrophic and strictly aerobic. Nitrate was not used as electron acceptor. Chemolithoautotrophic growth was observed with thiosulfate, tetrathionate, sulfur and sulfide. Neither isolate was able to grow heterotrophically. For strain JB-A1(T), growth was observed between pH values of 4.0 and 7.5 with an optimum at pH 6.0, whereas for strain JB-A2(T), growth was observed between pH 4.2 and 8.5 with an optimum at pH 6.5. The temperature limits for growth were between 3.5 and 42 degrees C and 3.5 and 39 degrees C, respectively. The optimum growth temperature for strain JB-A1(T) was between 29 and 33.5 degrees C, whereas strain JB-A2(T) showed optimal growth between 32 and 35 degrees C. The mean maximum growth rate on thiosulfate was 0.35 h(-1) for strain JB-A1(T) and 0.45 h(-1) for strain JB-A2(T)

    Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio

    Get PDF
    The microbial population structure and function of natural anaerobic communities maintained in lab-scale continuously stirred tank reactors at different lactate to sulfate ratios and in the absence of sulfate were analyzed using an integrated approach of molecular techniques and chemical analysis. The population structure, determined by denaturing gradient gel electrophoresis and by the use of oligonucleotide probes, was linked to the functional changes in the reactors. At the influent lactate to sulfate molar ratio of 0.35 mol mol−1, i.e., electron donor limitation, lactate oxidation was mainly carried out by incompletely oxidizing sulfate-reducing bacteria, which formed 80–85% of the total bacterial population. Desulfomicrobium- and Desulfovibrio-like species were the most abundant sulfate-reducing bacteria. Acetogens and methanogenic Archaea were mostly outcompeted, although less than 2% of an acetogenic population could still be observed at this limiting concentration of lactate. In the near absence of sulfate (i.e., at very high lactate/sulfate ratio), acetogens and methanogenic Archaea were the dominant microbial communities. Acetogenic bacteria represented by Dendrosporobacter quercicolus-like species formed more than 70% of the population, while methanogenic bacteria related to uncultured Archaea comprising about 10–15% of the microbial community. At an influent lactate to sulfate molar ratio of 2 mol mol−1, i.e., under sulfate-limiting conditions, a different metabolic route was followed by the mixed anaerobic community. Apparently, lactate was fermented to acetate and propionate, while the majority of sulfidogenesis and methanogenesis were dependent on these fermentation products. This was consistent with the presence of significant levels (40–45% of total bacteria) of D. quercicolus-like heteroacetogens and a corresponding increase of propionate-oxidizing Desulfobulbus-like sulfate-reducing bacteria (20% of the total bacteria). Methanogenic Archaea accounted for 10% of the total microbial community

    Oxic-anoxic regime shifts mediated by feedbacks between biogeochemical processes and microbial community dynamics

    Get PDF
    The role of microbial communities in regime shifts is poorly understood. Here, the authors use a mathematical model and field data from a seasonally stratified lake to show that gradual environmental changes can induce oxic-anoxic regime shifts mediated by microbial community dynamics and redox processes

    Impact of Experimental Hookworm Infection on the Human Gut Microbiota

    Get PDF
    The interactions between gastrointestinal parasitic helminths and commensal bacteria are likely to play a pivotal role in the establishment of host-parasite cross-talk, ultimately shaping the development of the intestinal immune system. However, little information is available on the impact of infections by gastrointestinal helminths on the bacterial communities inhabiting the human gut. We used 16S rRNA gene amplification and pyrosequencing to characterize, for the first time to our knowledge, the differences in composition and relative abundance of fecal microbial communities in human subjects prior to and following experimental infection with the blood-feeding intestinal hookworm, Necator americanus. Our data show that, although hookworm infection leads to a minor increase in microbial species richness, no detectable effect is observed on community structure, diversity or relative abundance of individual bacterial species

    Spatial Patterns of Iron- and Methane-Oxidizing Bacterial Communities in an Irregularly Flooded, Riparian Wetland

    Get PDF
    Iron- and methane-cycling are important processes in wetlands with one connected to plant growth and the other to greenhouse gas emission, respectively. In contrast to acidic habitats, there is scarce information on the ecology of microbes oxidizing ferrous iron at circumneutral pH. The latter is mainly due to the lack of isolated representatives and molecular detection techniques. Recently, we developed PCR–DGGE and qPCR assays to detect and enumerate Gallionella-related neutrophilic iron-oxidizers (Ga-FeOB) enabling the assessment of controlling physical as well as biological factors in various ecosystems. In this study, we investigated the spatial distribution of Ga-FeOB in co-occurrence with methane-oxidizing bacteria (MOB) in a riparian wetland. Soil samples were collected at different spatial scales (ranging from meters to centimeters) representing a hydrological gradient. The diversity of Ga-FeOB was assessed using PCR–DGGE and the abundance of both Ga-FeOB and MOB by qPCR. Geostatistical methods were applied to visualize the spatial distribution of both groups. Spatial distribution as well as abundance of Ga-FeOB and MOB was clearly correlated to the hydrological gradient as expressed in moisture content of the soil. Ga-FeOB outnumbered the MOB subgroups suggesting their competitiveness or the prevalence of Fe2+ over CH4 oxidation in this floodplain

    Assessment of caecal parameters in layer hens fed on diets containing wheat distillers dried grains with solubles

    Get PDF
    There is much interest in quantifying the nutritional value of UK wheat distillers dried grains with solubles (W-DDGS) for livestock species. A study was designed to evaluate caecal parameters (pH, short chain fatty acids (SCFAs) and bacterial diversity) in layer hens fed on balanced diets containing graded concentrations of W-DDGS. A total of 32 layer hens (Bovans Brown strain at 27 weeks of age) were randomly allocated to one of 4 dietary treatments containing W-DDGS at 0, 60, 120 or 180 g/kg. Each treatment was fed to 8 replicate individually housed layer hens over a 5-d acclimatisation period, followed by a 4-week trial. Individual feed intakes were monitored and all eggs were collected daily for weeks 2, 3 and 4 of the trial, weighed and an assessment of eggshell “dirtiness” made. All hens were culled on d 29 and caecal pH and SCFAs measured. Polymerase chain reaction denaturing gradient gel electrophoresis of the bacterial 16 S rDNA gene was used to assess total bacterial diversity of luminal caecal content from hens fed the 0 and 180 g W-DDGS/kg diets. Unweighted pair group method with arithmetic mean (UPGMA) dendrograms were generated from DGGE banding patterns. Increasing W-DDGS dietary concentrations resulted in a more acidic caecal environment. Caecal SCFAs were unaffected by diet aside from a quadratic effect for molar proportions of isobutyric acid. Diversity profiles of the bacterial 16S rRNA gene from luminal caecal contents were unaffected by W-DDGS inclusion. The results of the current study suggest that W-DDGS can be successfully formulated into nutritionally balanced layer diets (supplemented with xylanase and phytase) at up to 180 g/kg with no detrimental effects to the caecal environment

    Subcellular view of host-microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan-microbe symbiosis.

    Get PDF
    BackgroundSponges are increasingly recognised as key ecosystem engineers in many aquatic habitats. They play an important role in nutrient cycling due to their unrivalled capacity for processing both dissolved and particulate organic matter (DOM and POM) and the exceptional metabolic repertoire of their diverse and abundant microbial communities. Functional studies determining the role of host and microbiome in organic nutrient uptake and exchange, however, are limited. Therefore, we coupled pulse-chase isotopic tracer techniques with nanoscale secondary ion mass spectrometry (NanoSIMS) to visualise the uptake and translocation of 13C- and 15N-labelled dissolved and particulate organic food at subcellular level in the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Halisarca caerulea.ResultsThe two sponge species showed significant enrichment of DOM- and POM-derived 13C and 15N into their tissue over time. Microbial symbionts were actively involved in the assimilation of DOM, but host filtering cells (choanocytes) appeared to be the primary site of DOM and POM uptake in both sponge species overall, via pinocytosis and phagocytosis, respectively. Translocation of carbon and nitrogen from choanocytes to microbial symbionts occurred over time, irrespective of microbial abundance, reflecting recycling of host waste products by the microbiome.ConclusionsHere, we provide empirical evidence indicating that the prokaryotic communities of a high and a low microbial abundance sponge obtain nutritional benefits from their host-associated lifestyle. The metabolic interaction between the highly efficient filter-feeding host and its microbial symbionts likely provides a competitive advantage to the sponge holobiont in the oligotrophic environments in which they thrive, by retaining and recycling limiting nutrients. Sponges present a unique model to link nutritional symbiotic interactions to holobiont function, and, via cascading effects, ecosystem functioning, in one of the earliest metazoan-microbe symbioses. Video abstract

    217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Society for Applied Microbiology and Blackwell for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 9 (2007): 238–249, doi:10.1111/j.1462-2920.2006.01134.x.Deep-sea sediments of the eastern Mediterranean harbor a series of dark, organic carbon-rich layers, so-called sapropels. Within these layers, the carotenoid isorenieratene was detected. Since it is specific for the obligately anaerobic phototrophic green sulfur bacteria, the presence of isorenieratene may suggest that extended water column anoxia occurred in the ancient Mediterranean Sea during periods of sapropel formation. Only three carotenoids (isorenieratene, β-isorenieratene and chlorobactene) are typical for green sulfur bacteria and thus do not permit to differentiate between the ~80 known phylotypes. In order to reconstruct the paleoecological conditions in more detail, we searched for fossil 16S rRNA gene sequences of green sulfur bacteria employing ancient DNA methodology. 540 bp-long fossil sequences could indeed be amplified from up to 217,000-year-old sapropels. In addition, such sequences were also recovered from carbon-lean intermediate sediment layers deposited during times of an entirely oxic water column. Unexpectedly, however, all the recovered 16S rRNA gene sequences grouped with freshwater or brackish, rather than truly marine, types of green sulfur bacteria. It is therefore feasible that the molecular remains of green sulfur bacteria originated from populations which thrived in adjacent freshwater or estuarine coastal environments rather than from an indigenous pelagic population.This work was funded by the Deutsche Forschungsgemeinschaft (grants Ov 20/3-2 and Ov 20/8-1 to 8-3)
    corecore