
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oxic-anoxic regime shifts mediated by feedbacks between
biogeochemical processes and microbial community dynamics

Citation for published version:
Bush, T, Diao, M, Allen, RJ, Sinnige, R, Muyzer, G & Huisman, J 2017, 'Oxic-anoxic regime shifts mediated
by feedbacks between biogeochemical processes and microbial community dynamics', Nature
Communications, vol. 8, 789. https://doi.org/10.1038/s41467-017-00912-x

Digital Object Identifier (DOI):
10.1038/s41467-017-00912-x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Nature Communications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Jan. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/363992259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/rosalind-allen(d0922646-a37c-42d7-93cf-54d507ad66d2).html
https://www.research.ed.ac.uk/portal/en/publications/oxicanoxic-regime-shifts-mediated-by-feedbacks-between-biogeochemical-processes-and-microbial-community-dynamics(d3d85484-22cf-4e7b-93e3-cd0a964c3591).html
https://www.research.ed.ac.uk/portal/en/publications/oxicanoxic-regime-shifts-mediated-by-feedbacks-between-biogeochemical-processes-and-microbial-community-dynamics(d3d85484-22cf-4e7b-93e3-cd0a964c3591).html
https://doi.org/10.1038/s41467-017-00912-x
https://doi.org/10.1038/s41467-017-00912-x
https://www.research.ed.ac.uk/portal/en/publications/oxicanoxic-regime-shifts-mediated-by-feedbacks-between-biogeochemical-processes-and-microbial-community-dynamics(d3d85484-22cf-4e7b-93e3-cd0a964c3591).html


ARTICLE

Oxic-anoxic regime shifts mediated by feedbacks
between biogeochemical processes and microbial
community dynamics
Timothy Bush1,2, Muhe Diao1, Rosalind J. Allen2, Ruben Sinnige1, Gerard Muyzer1 & Jef Huisman1

Although regime shifts are known from various ecosystems, the involvement of microbial

communities is poorly understood. Here we show that gradual environmental changes

induced by, for example, eutrophication or global warming can induce major oxic-anoxic

regime shifts. We first investigate a mathematical model describing interactions between

microbial communities and biogeochemical oxidation-reduction reactions. In response to

gradual changes in oxygen influx, this model abruptly transitions between an oxic state

dominated by cyanobacteria and an anoxic state with sulfate-reducing bacteria and photo-

trophic sulfur bacteria. The model predictions are consistent with observations from a sea-

sonally stratified lake, which shows hysteresis in the transition between oxic and anoxic

states with similar changes in microbial community composition. Our results suggest that

hysteresis loops and tipping points are a common feature of oxic-anoxic transitions, causing

rapid drops in oxygen levels that are not easily reversed, at scales ranging from small ponds

to global oceanic anoxic events.
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Ecosystems may undergo sharp transitions in response to
smooth environmental changes1–4. If these transitions lead
to large and persistent changes in ecosystem structure and

functioning, they are generally referred to as regime shifts.
Regime shifts are often attributed to alternative stable states
(where distinct ecological states exist under the same external
conditions1, 2) and have been documented in a wide range of
terrestrial, freshwater, and marine habitats3, 4. Theoretical work
has contributed to understanding ecological regime shifts3 and
has identified early warning signs that a regime shift may be
imminent4. However, so far the potential involvement of
microbial communities in regime shifts has been largely ignored,
despite the fact that microbial communities make a significant
contribution to many ecological and biogeochemical processes5, 6.

A small number of studies suggest that regime shifts may
occur in microbial communities. Recent work has pointed at the
existence of alternative stable states in the microbial community
of the human gut7, 8 and in phytoplankton populations sensitive
to high light9, 10. Other studies have shown a regime shift from
iron reduction to sulfate reduction in an iron-rich groundwater
flow11 and compositional regime shifts in a nitrifying batch
reactor12. However these examples are few, and furthermore,
unlike in traditional macro-ecology, there is little theoretical work
on regime shifts in microbial ecosystems13, 14.

Microorganisms play an important role in the biogeochemical
cycles of lakes and oceans. Many waters in temperate climates
become vertically stratified in summer, when the sun heats up
the surface layer while the temperature in the deeper layers
remains low. Seasonal stratification induces changes in microbial
community structure15–17. The surface layer (epilimnion)
is usually rich in oxygen and often dominated by oxygenic
phototrophic microorganisms such as cyanobacteria and
eukaryotic algae. Especially in productive waters, microbial
degradation of organic matter can create anoxic conditions in the
deeper layers (hypolimnion), which may shift the microbial
community to heterotrophic bacteria utilizing nitrate or sulfate as
an electron acceptor. In between these layers, in the metalimnion,
oxygen diffusing down from the epilimnion meets sulfide
diffusing up from the hypolimnion, providing a niche for
photosynthetic and non-photosynthetic sulfur-oxidizing
bacteria18, 19. Because of surface cooling and wind action, the
stratification is broken in the fall when different water layers are
mixed, homogenizing the oxygen and temperature profiles.

In this paper, we combine a mathematical model and lake data,
to show that regime shifts in microbial community structure may
be common in seasonally stratified waters with an active micro-
bial sulfur cycle. We first present a simple mathematical model of
a microbial ecosystem containing cyanobacteria, sulfate-reducing
bacteria and phototrophic sulfur bacteria. We show that this
model can undergo regime shifts between oxic and anoxic states
in response to gradual parameter variations that mimic changes
in vertical stratification and hence oxygen diffusivity across the
thermocline. Subsequently, we compare the model predictions
with data from a seasonally stratified lake with an anoxic hypo-
limnion during summer, and discuss the wider implications of
oxic-anoxic regime shifts for other ecosystems.

Results
Bringing microbial dynamics into a biogeochemical model. We
consider a simple model that integrates microbial community
dynamics with biogeochemical processes. The microbial
community consists of three functional groups: oxygen-
producing cyanobacteria (CB), phototrophic sulfur bacteria
(PB) such as purple or green sulfur bacteria, and sulfate-reducing
bacteria (SB) (Fig. 1). Growth of each microbial population is

assumed to depend on the availability of phosphorus (P), a key
limiting resource for many aquatic ecosystems20. Furthermore,
the growth of phototrophic sulfur bacteria depends on sulfide
(SR, representing reduced sulfur), whereas that of sulfate-reducing
bacteria depends on sulfate (SO, representing oxidized sulfur).
Sulfide produced by sulfate-reducing bacteria inhibits the
growth of cyanobacteria21. Conversely, oxygen (O) produced by
cyanobacteria is assumed to be inhibitory to both sulfate-reducing
bacteria22 and phototrophic sulfur bacteria23.

Hence, changes in the population densities of cyanobacteria
(NCB), phototrophic sulfur bacteria (NPB) and sulfate-reducing
bacteria (NSB) can be described as:

dNCB

dt
¼ gCB Pð Þ hCB SRð ÞNCB �mCBNCB ð1Þ

dNPB

dt
¼ gPB P; SRð Þ hPB Oð ÞNPB �mPBNPB ð2Þ

dNSB

dt
¼ gSB P; SOð ÞhSB Oð ÞNSB �mSBNSB ð3Þ

where the functions gj(X,Y) and hj(X) describe growth and
inhibition, respectively, of microbe j on substrates X and Y, and
mj is the mortality rate of microbe j (e.g., due to grazing or viral
lysis). The growth and inhibition functions are detailed in the
Methods section.

Reduced sulfur is oxidized by phototrophic sulfur bacteria,
whereas oxidized sulfur is reduced by sulfate-reducing bacteria,
connecting these species in a biogeochemical cycle as they
pass the sulfur back and forth (Fig. 1). In addition, oxidation
of reduced sulfur can be mediated by chemolithotrophic sulfur-

CB

PB

SO

P

Consumption

Production

Inhibition

Abiotic
reaction

SB

SR

O

Fig. 1 Schematic diagram of the microbial ecosystem model. The model
consists of three bacterial functional groups (CB cyanobacteria, PB
phototrophic sulfur bacteria, SB sulfate-reducing bacteria) and four
chemical substrates (P phosphorus, O oxygen, SR reduced sulfur, SO
oxidized sulfur). Arrows denote the consumption (blue arrows) and
production (magenta arrows) of chemicals by the microbial populations.
Orange lines represent growth inhibition of the microbial populations. Green
arrows indicate abiotic oxidation of reduced sulfur to oxidized sulfur
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oxidizing bacteria and may also occur abiotically24, which we
have modeled here as a simple first-order process. Furthermore,
we assume a small diffusive flux of oxidized and reduced sulfur
into or out of the system, depending on their concentration
gradients and a substrate-specific diffusivity αS. Accordingly,
changes in the oxidized and reduced sulfur concentrations can be
described as:

dSO
dt

¼ 1

ySPB
gPB P; SRð Þ hPB Oð ÞNPB

� 1
ySSB

gSB P; SOð Þ hSB Oð ÞNSB

þcOSR þ αS SO;b � SO
� �

ð4Þ

dSR
dt

¼ � 1
ySPB

gPB P; SRð Þ hPB Oð ÞNPB

þ 1
ySSB

gSB P; SOð Þ hSB Oð ÞNSB

� cOSR þ αS SR;b � SR
� �

ð5Þ

where yjk is the yield (in cells per μmole of substrate) of microbe j
on substrate k, c is the oxidation rate of reduced sulfur, and SO,b
and SR,b are the background concentrations of oxidized and
reduced sulfur, respectively.

Oxygen is produced by cyanobacteria, reacts with reduced
sulfur, and diffuses into or out of the system depending on the
concentration gradient. Finally, phosphorus is consumed by all
three microbial groups, and also has a diffusive flux across the
system boundary. Hence, the oxygen and phosphorus dynamics

can be written as:

dO
dt

¼ pCBgCB Pð Þ hCB SRð ÞNCB � cOSR þ αO Ob � Oð Þ ð6Þ

dP
dt

¼ � 1
yPCB

gCB Pð ÞhCB SRð ÞNCB

� 1
yPPB

gPB P; SRð ÞhPB Oð ÞNPB

� 1
yPSB

gSB P; SOð ÞhSB Oð ÞNSB þ αP Pb � Pð Þ

ð7Þ

where pCB is the oxygen production per cyanobacterial cell.
Parameter values were based on microbial communities of
freshwater lakes, where available (Supplementary Table 1). We
note, however, that the model results are quite robust, since we
obtained qualitatively similar results when using parameter values
representative of marine environments25 or microbial mats26.

Oxic-anoxic regime shifts. Ecological regime shifts can be
identified by certain behaviors3, 13. First, models with regime
shifts often contain alternative stable states, such that they
may develop in different directions depending on the initial
conditions. Second, environmental changes can cause ecosystems
containing alternative stable states to become stuck in an
ecosystem state, such that simply reversing the environmental
change is not sufficient to return the ecosystem to its original
state: a phenomenon known as hysteresis. For example,
overfishing can cause collapses in coral reef structure that cannot
be recovered simply by returning to earlier, lower fishing rates27.
Here, we demonstrate that our model displays these two
characteristic signs of regime shifts by investigating its response
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Fig. 2 Illustration of the two alternative stable states. a, b When the model starts with a low initial population density of cyanobacteria (CB), it develops
towards an anoxic ecosystem with, a high abundances of phototrophic sulfur bacteria (PB) and sulfate-reducing bacteria (SB) and, b a high concentration of
reduced sulfur (SR) but low oxygen concentration (O). c, d When the model starts with a high initial population density of cyanobacteria, it develops
towards an oxic ecosystem with, c high abundances of cyanobacteria and, d high concentrations of oxygen and oxidized sulfur (SO). Parameter values are
given in Supplementary Table 1, with Pb= 9.5 μM, αO= 8 × 10−4 h−1. Initial conditions: a, b NPB= NSB= 1 × 107 cells L−1, NCB= 5 × 101 cells L−1, SO= 300 μM,
SR= 300 μM, O= 10 μM, P= 10 μM; c, d NPB= NSB= 1 × 102 cells L−1, NCB= 1 × 108 cells L−1, SO= 500 μM, SR= 50 μM, O= 300 μM, P= 4 μM
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to parameter changes designed to mimic seasonal variation in
lake stratification.

First, we investigate the sensitivity of the model to the initial
composition of the microbial community. Figure 2 compares how
the ecosystem develops over time for different initial bacterial
population densities. The results show that the model is sensitive
to the initial community composition, demonstrating the
existence of alternative stable states. If sulfate-reducing and
phototrophic sulfur bacteria are initially dominant, the oxygen
concentration remains low, the concentration of reduced sulfur
becomes sufficiently high to suppress cyanobacterial growth, and
the system develops an anoxic state (Fig. 2a, b). Conversely, if
cyanobacteria are dominant first, their photosynthetic oxygen
production is sufficiently high to suppress the growth of
sulfate-reducing bacteria and phototrophic sulfur bacteria,
generating an oxic state (Fig. 2c, d).

Second, to determine whether the model displays hysteresis, we
investigate how it responds to changes in oxygen influx. We vary
the parameter αO as a proxy for the turbulent diffusion of oxygen
across the thermocline of a seasonally stratified lake. A low
value of the oxygen diffusivity αO represents the case where
stratification restricts turbulent diffusion of oxygen across the
thermocline, and a high value of oxygen diffusivity represents
the case where the lake is completely mixed and oxygenated.
The results confirm the existence of two alternative stable states
for a wide range of oxygen diffusivities: one with a stable
cyanobacterial population at steady state (blue line) and another
where the cyanobacterial population has collapsed (red line)
(Fig. 3a). Towards which of these two states the system
develops depends on whether the initial population density of
cyanobacteria is above or below the separatrix (orange dashed
line).

The two alternative stable states are also visible in the
steady-state concentration of dissolved oxygen: the ecosystem
becomes either oxic or anoxic (Fig. 3b). Starting from the anoxic
state, the ecosystem undergoes a regime shift when the oxygen
diffusivity increases to high levels. That is, at the tipping point
T1 it abruptly transitions from the anoxic to the oxic state.
Conversely, once the ecosystem is oxic, it remains oxic when the
oxygen diffusivity decreases, and flips back to the anoxic state
only when oxygen diffusivity has become very low at tipping
point T2. Hence, the system displays hysteresis (as indicated by
black arrows in Fig. 3b). The underlying mechanism for the
existence of this hysteresis loop is that the microbial community
composition differs between the oxic and anoxic states. The
anoxic state is characterized by dense populations of phototrophic
sulfur bacteria and sulfate-reducing bacteria and high sulfide

concentrations, which prevent cyanobacterial invasion over a
wide range of oxygen diffusivities. Only when the oxygen influx
becomes high enough to suppress the phototrophic sulfur
and sulfate-reducing bacteria, can the cyanobacteria invade.
Conversely, the oxic state is dominated by cyanobacteria whose
photosynthetic oxygen production contributes to the persistence
of the oxic state, thereby suppressing invasion of the anaerobic
sulfur bacteria. Thus, only at a very low oxygen diffusivity can the
anaerobic sulfur bacteria become established.

The anoxic state of our model can take two different forms
depending on the oxygen input. At low oxygen diffusivity, the
model predicts coexistence of sulfate-reducing bacteria and
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phototrophic sulfur bacteria which pass the sulfur back and forth
(orange and gray areas in Fig. 4). At intermediate oxygen
diffusivity, the anoxic state consists of sulfate-reducing bacteria
only (green and pink area). In this case, oxidation of reduced
sulfur by sulfur-oxidizing bacteria and direct chemical oxidation
diverts reduced sulfur from the phototrophic sulfur bacteria,
while resupplying sulfate-reducing bacteria with oxidized sulfur.
Hence, sulfate-reducing bacteria obtain a selective advantage,
and can displace the phototrophic sulfur bacteria during
competition for phosphorus.

Phosphorus enrichment has a profound effect on oxic-anoxic
regime shifts. As phosphorus availability increases, the model
predicts that the region with alternative stable states spreads out
over a larger range of oxygen diffusivities (gray and pink area in
Fig. 4). The reason is that, in the oxic state, the population
density of cyanobacteria increases with phosphorus enrichment.
High cyanobacterial densities can sustain the oxic state by their
own photosynthetic oxygen production even when the diffusive
oxygen influx into the system becomes very low. Conversely, in
the anoxic state, population densities of the anaerobic sulfur
bacteria increase with phosphorus enrichment, and hence they
can maintain anoxic conditions up to higher oxygen diffusivities.
Thus, the region with alternative stable states widens with
phosphorus enrichment, suggesting that particularly eutrophic
waters will be very sensitive to oxic-anoxic regime shifts.

Comparison with lake data. Our model is a simplification of
reality, in which we have reduced the highly diverse microbial
communities and plethora of biogeochemical reactions in aquatic
ecosystems to only a few interacting processes (Fig. 1). It is
therefore interesting to assess whether we can find signatures for
oxic-anoxic regime shifts in lakes that are consistent with the
model results.

We investigated microbial community dynamics and water
quality parameters in the seasonally stratified Lake Vechten18, 28,
a small lake in the Netherlands. In early spring, the lake was well
mixed and oxygenated (Fig. 5a, b). Subsequently, a temperature
stratification developed, with warm oxygen-saturated waters in
the epilimnion whereas the hypolimnion became anoxic during
summer. Nitrate concentrations (not shown) were< 1 μM in
the hypolimnion, providing favorable conditions for sulfate
reduction. Sulfate concentrations were highest in early spring,
and decreased to low concentrations in the anoxic hypolimnion
(Fig. 5c). Conversely, sulfide accumulated in the anoxic
hypolimnion, with highest concentrations in late summer and
early fall (Fig. 5d).

Interestingly, when the lake became mixed again in November
and December, it did not return to the oxic state but became
anoxic throughout (Fig. 5b). Apparently, mixing during fall
turnover was insufficient to bring the lake back into the oxic state;
a behavior that looks remarkably similar to the hysteresis
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predicted by our model. To study this pattern in further detail, we
first calculated the squared buoyancy frequency, N2, at the
thermocline as a measure of the strength of stratification29, 30.
The buoyancy frequency confirms that Lake Vechten is strongly
stratified during the summer period, but well mixed during late
fall and winter (Fig. 5e). The inverse of the squared buoyancy
frequency (1/N2) provides a simple proxy of the oxygen
diffusivity across the thermocline (see Methods). Plotting the
dissolved oxygen concentration in the hypolimnion against 1/N2

reveals a clear hysteresis loop (Fig. 6a), which is remarkably
similar to the hysteresis loop predicted by the model (Fig. 3b).
That is, intense mixing (high 1/N2) produced oxic conditions in
Lake Vechten during the spring period, whereas the lake was
anoxic at the same intensity of mixing during fall turnover.
We note that this result is robust, irrespective of the exact depth
at which the oxygen concentration is measured (Supplementary
Fig. 1).

We used 16S rRNA amplicon sequencing data to assess
whether changes in microbial community structure were
consistent with the model predictions. Cyanobacteria dominated
when the lake was well mixed and oxygenated in winter and early
spring (Fig. 5f). Conversely, as the lake became stratified in
summer, both sulfate-reducing bacteria and phototrophic
sulfur bacteria increased in the anoxic hypolimnion whereas
cyanobacteria decreased dramatically. Co-occurrence network
analysis of microbial taxa in the metalimnion confirms
this pattern: phototrophic sulfur bacteria coexisted with
sulfate-reducing bacteria, while both groups were absent when
cyanobacteria were present (Fig. 6b). Hence, the microbial
community composition alternated between two distinct states,
in agreement with the model predictions.

Interestingly, Lake Vechten did not turn anoxic during fall
turnover every year28. In several earlier years, the entire water
column became fully oxygenated in the fall and the sulfur bacteria
disappeared. This matches our model predictions, which indicate
that when a stratified lake with an oxic epilimnion and anoxic
hypolimnion is mixed it may become either oxic or anoxic
depending on the initial conditions (Fig. 2). That is, subtle
differences in the mixing of these two water layers may determine
whether the system develops towards an oxic or anoxic state.
This bistable behavior is a typical feature of systems with
alternative stable states.

Discussion
Our model and lake data show that the interplay between
microbial communities and oxidation-reduction processes creates
systems with hysteresis loops and tipping points, in which gradual
changes in oxygen influx, vertical stratification or nutrient levels
can induce abrupt transitions between oxic and anoxic states.
Other ecosystems with microbial communities similar to
our model may undergo similar oxic-anoxic regime shifts. An
interesting example is Lake Rogoznica, a marine lake along
the Croatian coast filled with seawater31, 32. Similar to Lake
Vechten, this enclosed marine ecosystem is stratified during
summer, with an oxic epilimnion containing cyanobacteria and
eukaryotic phytoplankton and an anoxic sulfidic hypolimnion
dominated by phototrophic sulfur bacteria. In some years, but not
all, the entire water column of Lake Rogoznica became anoxic
during fall turnover31, in agreement with the bistability predicted
by our model. Furthermore, during anoxic holomixis, the
phototrophic sulfur bacteria were replaced by sulfur-oxidizing
chemotrophs32, supporting one of the other model predictions,
i.e., that environmental changes may alter the species composi-
tion of the sulfur bacteria in the anoxic state (Fig. 4).

In recent decades, hypoxia has spread across many eutrophied
coastal waters33, 34. Prolonged hypoxia may develop into anoxic
conditions with high sulfide concentrations, causing mass
mortalities of fish and benthic organisms33. These coastal waters
often show strong fluctuations in oxygen saturation, triggered by
small changes in density stratification or coastal upwelling rates35.
It is possible that the coastal waters in these highly dynamic
regions are poised between the oxic and anoxic alternative stable
states represented in our model. Our model results and field
data support earlier suggestions34, 36 that accumulation of sulfide
and other reduced compounds and elimination of the aerobic
community may produce a hysteresis loop, delaying recovery
from coastal hypoxia.

We speculate that similar oxic-anoxic regime shifts may have
occurred at a global scale in the Earth’s geological past, when vast
areas of the ocean became oxygen-depleted during oceanic anoxic
events (OAEs)37. Many OAEs were associated with periods of
global warming and high atmospheric CO2 concentrations.
High temperatures caused intense continental weathering,
enhanced phosphorus discharge into the oceans, lowered oxygen
solubility and increased thermohaline stratification suppressing
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oxygen input into the deeper water layers37, 38. As our results
indicate, these changes may trigger a regime shift to anoxic
conditions. During OAEs, the oceans developed high sulfide
concentrations37, 39 and molecular biomarkers indicate that green
sulfur bacteria were common in the photic zone40–42. These
fascinating findings are all consistent with our model results,
suggesting that OAEs are characterized by hysteresis effects and
tipping points. If so, environmental changes that push the Earth’s
climate beyond a critical tipping point may cause large-scale
transitions from oxic to anoxic conditions in the oceans that are
not easily reversed.

Our model is only an abstract representation of the real world,
providing a highly simplified picture of the complexity of
oxic-anoxic transitions. We have specifically focused on
microbially-mediated oxidation-reduction reactions in the
sulfur cycle. Various other physical, chemical, and biological
processes that may also affect whether ecosystems become oxic
or anoxic have been conveniently ignored. Furthermore, the
species composition of natural communities plays a key role
not only in the sulfur cycle but also in several other biogeo-
chemical cycles (e.g., in the nitrogen and carbon cycle), which
may again lead to unexpected nonlinear feedback mechanisms.
Hence, our findings may provide an interesting starting point
for further integration of ecological community dynamics in
biogeochemical process studies, and further analysis of its
implications.

In conclusion, our model results and field data indicate that the
well-known transition from oxic to anoxic conditions in aquatic
environments is not a gradual process, but may occur in the form
of a regime shift. This regime shift is mediated by nonlinear
feedbacks between biogeochemical processes and microbial
community dynamics, which can produce hysteresis. Once water
becomes anoxic, a large oxygen influx is required before an
aerobic community can become re-established, because the
anaerobic sulfur cycle has to be overcome. Given the continued
eutrophication of many lakes and coastal waters in combination
with enhanced stratification by global warming, an improved
understanding and prediction of oxic-anoxic regime shifts is
essential if we are to mitigate the negative environmental effects
of these phenomena.

Methods
Growth and inhibition functions. The microbial literature offers several different
equations for the growth and inhibition functions gj(X, Y) and hj(X). Here, we have
chosen the Monod equation for growth, with multiplicative Monod kinetics when
the growth rate is determined by two substrates43:

gj X;Yð Þ ¼ gmax;j
X

Kj;X þ X

� �
Y

Kj;Y þ Y

� �
ð8Þ

where gmax,j is the maximum specific growth rate of species j, and Kj,X and Kj,Y

(μM) are the half-saturation constants of species j on substrates X and Y. Inhibition
of microbial growth is described by the Haldane equation44, 45:

hj Xð Þ ¼ 1

1þ X=Hj;X
� � ð9Þ

where Hj,X can be interpreted as a ‘half-inhibition constant’, i.e., it is the con-
centration of inhibitory substance X at which the growth rate of species j is reduced
by 50%.

Numerical simulation of the model. Our model comprises 7 ordinary differential
equations, each consisting of multiple nonlinear terms. We therefore relied on
numerical analysis of the model behavior.

The 1D-bifurcation diagram in Fig. 3 was produced by numerical simulation of
the dynamics until steady state, at different values of the oxygen diffusivity. We
used a simple continuation approach to track the equilibria of the system, where
the steady state of the previous simulation at a given oxygen diffusivity provided
the initial conditions for the next simulation at a slightly higher (or slightly lower)
oxygen diffusivity. In this way, the equilibrium of the sulfur bacteria was tracked by
gradually increasing the oxygen diffusivity until the equilibrium of the sulfur

bacteria became unstable (i.e., until the trajectory diverged away from the
equilibrium). Likewise, the alternative equilibrium of the cyanobacteria was
tracked from the other side, by gradually decreasing the oxygen diffusivity,
until the cyanobacterial equilibrium became unstable. This continuation
approach was supplemented by additional numerical simulations sampling a
broad range of initial conditions to verify the results. Trajectories always
converged to a stable point; we did not observe stable periodic orbits or chaotic
dynamics.

The 2D-bifurcation diagram in Fig. 4 was produced in a similar way. We first
generated 1D-bifurcation diagrams as function of oxygen diffusivity, for a fixed
value of the background phosphorus (as in Fig. 3). This was repeated at many
different values of the background phosphorus to produce the 2D-bifurcation
diagram. In total, the graph in Fig. 4 is based on a grid of 400 × 400 numerical
simulations.

All numerical simulations were run twice for consistency using two
different methods of numerical integration: the integrate.odeint function from the
widely used Python library Scipy, and a custom script in C for integrating systems
of ordinary differential equations using the classic fourth order Runge–Kutta
Method.

Study site and sampling. Lake Vechten (52°04′N, 5°05′E) has a maximum
depth of 11.9 m, mean depth of 6.0 m and surface area of 4.7 ha28. The lake
was sampled at biweekly to monthly intervals at every meter depth (0–10 m)
from March 2013 to early April 2014. Water temperature and dissolved oxygen
were measured on site using a Hydrolab DataSonde 4a (Hydrolab Corporation,
Austin, TX, USA) and these data were visualized with Ocean Data View (ver-
sion 4.6.5). Sulfate was measured by an auto-analyzer (SAN++, Skalar, The
Netherlands) based on the methylthymol blue method46. Sulfide was fixed with
zinc acetate (10% w/v) immediately in the field, and subsequently measured
spectroscopically in the laboratory using methylene blue47. Water samples were
filtered through 0.2 μm nylon membrane filters (Millipore, GNWP) to collect
bacterial cells. Filters were frozen immediately and stored at −20 °C until further
processing.

Buoyancy frequency. The density of water, ρ (kg m−3), was calculated
from temperature, T (°C), using the Thiesen–Scheel–Diesselhorst equation48.
We quantified the strength of stratification as the square of the buoyancy
frequency29, 30:

N2 ¼ g
ρ

dρ
dz

ð10Þ

where z is depth (m), g is the gravitational constant (9.8 m s−2), and dρ/dz is the
density gradient at the thermocline.

The flux of oxygen across the thermocline can be calculated as F= Kz (∂O2/∂z),
where Kz is the vertical eddy diffusivity. The eddy diffusivity depends on the
buoyancy frequency according to Kz = Γε/N2, where Γ is the mixing efficiency and
ε is the rate of turbulent kinetic energy dissipation30, 49. Hence, the inverse of the
squared buoyancy frequency (1/N2) can be used as a simple proxy of the oxygen
diffusivity across the thermocline.

DNA extraction and 16S rRNA amplicon sequencing. DNA was extracted
from bacteria on the filters using the PowerSoil DNA Isolation Kit according
to the manufacturer’s instructions (Mo Bio, Laboratories Inc.). Extracted
DNA concentrations were quantified with the Qubit dsDNA BR Assay Kit
(Invitrogen). Sequencing was performed on an Illumina MiSeq system by
the Research and Testing Laboratory (Lubbock, Texas, USA). The primer pair
S-D-Bact-0341-b-S-17 (5′-CCTA CGGGNGGCWGCAG-3′) and S-D-Bact-0785-
a-A-21 (5′-GACTACHVGGGTATCTAATCC-3′) was used to generate paired-end
sequence reads covering the V3–V4 region of the 16S rRNA gene50. After
quality filtering, a total of 2,934,111 sequences was obtained with an average
sequence length of 420 bp.

Co-occurrence network analysis. 16S rRNA sequences were assigned to
three functional groups: (1) Bacteria of the phylum Cyanobacteria (CB). (2)
Phototrophic sulfur bacteria (PB) consisting of the phylum Chlorobi (green sulfur
bacteria) and the order Chromatiales from the class Gammaproteobacteria (purple
sulfur bacteria). (3) Sulfate-reducing bacteria (SB) consisting of the orders
Desulfobacterales, Desulfuromonadales, and Desulfovibrionales from the class
Deltaproteobacteria, as these were the only known sulfate-reducing bacteria present
in the sequence data.

Co-occurrence networks were constructed with the Cytoscape plugin software
program CoNet51. We used an ensemble approach to identify co-occurrence based
on the Spearman rank correlation and Kullback–Leibler dissimilarity51. The
ReBoot procedure with 4000 permutations was used to control for false-positive
correlations. A false discovery rate of 5% was applied to control for multiple
comparisons52.
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Data availability. The 16S amplicon sequences have been deposited in the
Sequence Read Archive (SRA) of the National Center for Biotechnology
Information (NCBI), as data set SAMN06314865-SAMN06314918. All other
relevant data are available from the corresponding author on request.
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