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SUMMARY 1 

Deep-sea sediments of the eastern Mediterranean harbor a series of dark, organic carbon-rich 2 

layers, so-called sapropels. Within these layers, the carotenoid isorenieratene was detected. Since 3 

it is specific for the obligately anaerobic phototrophic green sulfur bacteria, the presence of 4 

isorenieratene may suggest that extended water column anoxia occurred in the ancient 5 

Mediterranean Sea during periods of sapropel formation. Only three carotenoids (isorenieratene, 6 

β-isorenieratene and chlorobactene) are typical for green sulfur bacteria and thus do not permit 7 

to differentiate between the ∼80 known phylotypes. In order to reconstruct the paleoecological 8 

conditions in more detail, we searched for fossil 16S rRNA gene sequences of green sulfur 9 

bacteria employing ancient DNA methodology. 540 bp-long fossil sequences could indeed be 10 

amplified from up to 217,000-year-old sapropels. In addition, such sequences were also 11 

recovered from carbon-lean intermediate sediment layers deposited during times of an entirely 12 

oxic water column. Unexpectedly, however, all the recovered 16S rRNA gene sequences 13 

grouped with freshwater or brackish, rather than truly marine, types of green sulfur bacteria. It is 14 

therefore feasible that the molecular remains of green sulfur bacteria originated from populations 15 

which thrived in adjacent freshwater or estuarine coastal environments rather than from an 16 

indigenous pelagic population. 17 

18 
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INTRODUCTION 1 

All known green sulfur bacteria and about half of the species of purple sulfur bacteria are 2 

obligate anaerobic photolithoautotrophs which can only grow in the presence of light and 3 

reduced sulfur compounds as photosynthetic electron donators (Pfennig and Trüper, 1989; 4 

Overmann, 2001). Their specific physiological requirements render these bacteria suitable 5 

indicator organisms for past environmental conditions (Passier et al., 1999; Menzel et al., 2002). 6 

Eastern Mediterranean sediments harbor more than 1 cm-thick, organic carbon-rich layers, 7 

so-called sapropels. Sapropels contain >2 % and up to 30% per weight of organic carbon and are 8 

embedded in hemipelagic carbonate oozes (< 0.5 wt% organic C) (Kidd et al., 1978). The 9 

enhanced organic carbon preservation during sapropel formation has been explained by anoxia 10 

of deep Mediterranean bottom water (Oceanic Anoxic Events; Rossignol-Strick, 1985; Rohling 11 

and Hilgen, 1991; Passier et al., 1999) or by increased marine primary production (Calvert, 12 

1983; Calvert et al., 1992). 1.8 to 3.0 million-year-old Pliocene sapropels were shown to contain 13 

the carotenoid isorenieratene and its diagenetic derivatives (Passier et al., 1999; Menzel et al., 14 

2002). Since isorenieratene occurs almost exclusively in green sulfur bacteria, it was concluded 15 

that sulfidic bottom waters extended into the photic zone during sapropel formation and that the 16 

Mediterranean Sea ecosystem underwent repeated and major oxic-anoxic shifts during the past 3 17 

million years.  18 

However, isorenieratene has also been detected in the actinobacteria Streptomyces griseus 19 

and Brevibacterium linens (Krubasik and Sandmann, 2000; Krügel et al., 1999). On the other 20 

hand, certain strains of green sulfur bacteria do not contain any detectable amounts of those 21 

carotenoids which were originally thought to be typical for this group (Glaeser et al. 2002). 22 

Since green sulfur bacteria form a distinct and coherent phylogenetic lineage (Overmann and 23 

Tuschak, 1997; Imhoff, 2003), 16S rRNA gene sequences provide an alternative means to trace 24 

their occurrence and species composition in the environment (Overmann et al., 1999). While 25 

green sulfur bacteria contain only three specific carotenoids (isorenieratene, β-isorenieratene and 26 

chlorobactene) (Overmann, 2001), 80 different 16S rRNA gene sequence types are recognized to 27 



 4 

date (A. Manske and J. Overmann, submitted). The three carotenoids occur across all different 1 

subgroups of the green sulfur bacteria (Imhoff, 2003), whereas species isolated from the marine 2 

environment form a single well-separated sequence cluster (marine group 1) (Imhoff, 2003; 3 

Manske et al., 2005). Therefore, analyses of their fossil 16S rRNA gene sequences in subsurface 4 

sediments would not only provide independent evidence for the occurrence of green sulfur 5 

bacteria but also permit a more detailed reconstruction of their paleoenvironment. To date, 6 

however, such a paleomicrobiological analysis has not been performed in the marine 7 

environment. 8 

Fully hydrated DNA spontaneously decays over only hundreds of years, mainly through 9 

hydrolysis and oxidation (Shapiro, 1981; Lindahl, 1993; Hofreiter et al., 2001). However, low 10 

temperatures, high ionic strength, anoxic conditions and protection from enzymatic degradation 11 

by adsorption extend the half-life of intact DNA by one or two orders of magnitude (Lindahl, 12 

1993; Poinar et al., 1996; Willerslev et al., 2004a). So far, intact DNA of anoxygenic 13 

phototrophic bacteria could be extracted from up to 9,100 year-old holocene lake sediments and 14 

was analyzed by PCR amplification and sequencing (Coolen and Overmann, 1998). Recently, 15 

amplification of fossil chloroplast DNA has been found to be reliable for samples which are 16 

hundreds of thousands of years old (Willerslev et al., 2003). Under favorable conditions of 17 

preservation, genomic DNA of anoxygenic phototrophic bacteria thus may have persisted for 18 

similar time periods in Mediterranean sapropels. 19 

In the present study, fossil DNA sequences and carotenoids of ancient green sulfur bacteria 20 

could be recovered from sapropels deposited between 8,000 and 217,000 years ago in the 21 

Eastern Mediterranean. Phylogenetic analyses were used to infer the most likely origin of the 22 

respective bacteria and provide a more detailed picture of the development of this marine 23 

ecosystem.  24 

25 
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RESULTS 1 

Vertical structure and age of sediment layers 2 

A four meter-long sediment core obtained at a water depth of 2155 m from the Eastern 3 

Mediterranean southeast of Crete contained four different sapropels which were identified as 4 

sapropels S1, S6, S7, and S8 based on geochemical evidence (Coolen et al., 2002; Fig. 1). The 5 

ages of these sapropels are 8,000 (S1), 172,000 (S6), 195,000 (S7) and 217,000 (S8) years (Emeis 6 

et al., 2000). The organic carbon content of the sapropels ranged between 2.3 and 8.5% (w/w), 7 

whereas intermediate layers contained only up to 0.16 % (Coolen et al., 2002). The intermediate 8 

layer Z1 is likely to represent a turbidite (K.-C. Emeis; pers. comm.). 9 

For subsequent analyses, the top of the sediment (Z0, 4-6 cm below surface), each sapropel 10 

layer (S1, 13-17 cm; S6, 262-266 cm; S7, 314-318 cm; and S8, 364-368 cm), and three 11 

intermediate hemipelagic layers between the sapropels (denoted Z1, 62-66 cm; Z6, 285-289 cm; 12 

and Z7, 333-337 cm) were selected (Fig. 1). 13 

Green sulfur bacterial carotenoids in late Pleistocene and Holocene sapropels 14 

Isorenieratene and β-isorenieratene could be detected in all four sapropel layers where they 15 

reached concentrations between 56.4 and 1280 ng·(g dry weight sediment)-1 (Fig. 1C). Initially, 16 

both carotenoids were identified by HPLC based on their characteristic retention time and 17 

absorption spectra (peaks at 454 and 482 nm and a shoulder at 428 nm). Analysis of these 18 

compounds by LC-MS in the APCI positive ion mode yielded major signals at m/z values of 529 19 

and 133. These masses match those of the protonated isorenieratene (i.e., [M+H]+) and of 20 

1,2,3,4-tetramethylbenzene, respectively, the latter representing a fragment typical of 21 

isorenieratene and β-isorenieratene. Our mass spectrometric analysis thus provides the first 22 

evidence for the presence of carotenoids of green sulfur bacteria in late Pleistocene and 23 

Holocene sapropels.  24 

In contrast, only traces of carotenoid compounds with the retention times and absorption 25 

spectra of isorenieratene and β-isorenieratene were detected in intermediate layers. 26 
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Concentrations ranged from (1.4 ± 0.1) to (5.9 ± 0.3) ng·(g dry weight sediment)-1 (Fig. 1C). 1 

Although above the detection limit, these trace amounts did not allow further analyses by LC-2 

MS. Therefore, it cannot be completely ruled out that other carotenoids were present, though 3 

carotenoids with retention times and absorption spectra identical to isorenieratene/β-4 

isorenieratene are currently not known.   5 

Detection and quantification of DNA of green sulfur bacteria 6 

After optimizing our extraction protocol, genomic DNA could be isolated from all eight 7 

sediment layers (Fig. 1A). Between 0.7 and 5.0 µg of DNA were extracted per gram dry weight 8 

of sediment from the four sapropels. These amounts significantly exceeded those obtained from 9 

the intermediate layers (0.01 to 0.12 µg·(g dry wt)-1) and were only matched by the value from 10 

the sediment surface (1.04 µg·(g dry wt)-1). Analysis by gel electrophoresis revealed that the 11 

DNA mostly consisted of up to 23 - 30 kb long fragments (data not shown). The shortest 12 

fragments detected measured 500 bp. This length distribution was even observed in extracts from 13 

the 217,000-year-old Mediterranean sapropel S8.  14 

The specific primer combination and PCR conditions used in the present study permit the 15 

selective amplification of 16S rRNA gene fragments of green sulfur bacteria (Overmann et al., 16 

1999). With the exception of the intermediate layer Z6, all samples yielded amplification 17 

products. The DNA extract of sapropel S7 yielded only a faint amount of DNA of the correct 18 

molecular size, but also some unspecific amplification products. Of all sapropel layers 19 

investigated, S7 contains the by far highest amount of kerogen (total organic carbon content of 20 

8.5% as compared to ≤4.4% in other sapropels; Coolen et al., 2002). Similarly, Z6 contained the 21 

highest amount of total organic carbon of all intermediate layers (0.16 versus ≤0.01%). Most 22 

likely, the failure to obtain appropriate amplification products from these two layers resulted 23 

from the unfavourable ratio of fossil DNA to organic kerogen. 24 

Each amplification reaction was rigorously checked for contamination with extraneous DNA 25 

by routinely including a set of procedural blanks and PCR controls (as detailed in the Materials 26 
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and Methods section). Yet, neither the controls for a contamination of PCR reagents, nor the 1 

controls for a contamination during DNA extraction ever yielded amplification products (Fig. 2). 2 

A specific dot blot hybridization protocol was used to quantify the amount of green sulfur 3 

bacterial DNA in the different sediment layers after amplification (Fig. 3). Our original 4 

amplification method was found to be highly sensitive but not suitable for quantification because 5 

it did not yield a continuously increasing  response with increasing concentrations of target DNA 6 

used in the PCR. Calibration was possible, however, when an altered amplification PCR protocol 7 

was employed (Fig. 3, standards). This technique permitted a detection of green sulfur bacteria 8 

DNA if the latter constituted as little as 0.0065% of the total community DNA. Green sulfur 9 

bacterial 16S rRNA gene sequences could be quantified in six of the sediment layers (Fig. 1C, 10 

Fig.3). DNA extracted from the intermediate layers Z6 and Z7 did not yield detectable signals, 11 

although the latter yielded a product with the original, more sensitive, PCR method.  12 

Although most sapropel layers contained the highest absolute amounts of green sulfur 13 

bacterial DNA (Fig. 1C), maxima of the relative amounts did not always coincide with the 14 

presence or absence of sapropels (Fig. 1B). The highest percentage of green sulfur bacterial 15 

DNA (0.55 ± 0.02% of total community DNA) was determined for sapropel S8, whereas the 16 

second largest fraction of 16S rRNA genes of green sulfur bacteria (0.088% of total community 17 

DNA) was determined for intermediate layer Z1 (Fig. 1B). 18 

Phylogenetic identification of the fossil green sulfur bacteria 19 

In order to identify individual sequences, the amplified 16S rRNA gene fragments were analyzed 20 

further by denaturing gradient gel electrophoresis and sequencing. In order to be able to analyze 21 

sequences from intermediate layer Z7, PCR products obtained with the more sensitive 22 

amplification method were used. However, only PCR reactions which yielded exclusively 23 

specific products were analyzed, thereby excluding the amplification products from S7. 24 

A total of six different melting types could be recognized by DGGE fingerprinting (Fig. 4). 25 

Nine of the DNA bands were excised and sequenced. The results confirm that sequences of 26 
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green sulfur bacteria had been selectively amplified from the extracted DNA.  Seven of the 1 

bands (A through G in Fig. 4) yielded unambiguous sequences. Of the latter, bands A, B, E and F 2 

not only exhibited the same melting behavior during DGGE, but also contained the same 3 

sequence. This phylotype was found to be identical to those of 11 other strains or environmental 4 

sequences (Fig. 5) and fell into Group 3 among the green sulfur bacteria. Sequence type C was a 5 

member of Group 4a and only present in the intermediate layer Z1, yet could not be detected in 6 

the adjacent sapropel S1 or the surface layer Z0. Two other sequences (D and G) fell into Group 3 7 

(Fig. 5). Each represented a distinct, so far unknown sequence type (Fig. 5) and was found in 8 

only a single sapropel layer but was missing in all other samples (Fig. 4).  9 

Adsorptive binding of DNA to the sediments 10 

Sediment material of the sapropel S6 and the intermediate layer Z6 was chosen for adsorption 11 

assays since they contained comparatively low amounts of indigenous DNA compared to the 12 

other layers (Fig. 1A). Since the concentration of indigenous DNA determined (1.44 µg·(g dry 13 

weight sediment)-1 in S6) amounted to only a very minor fraction (0.003%) of the total 14 

adsorption capacity, the DNA already present in the samples did not interfere with these 15 

adsorption assays. 16 

The sapropel exhibited an extraordinarily high maximum adsorption capacity Smax for DNA 17 

((79.3 ± 2.8) µmol double-stranded DNA (g dry wt)-1; corresponding to 52.8 mg (g dry wt)-1) 18 

(Fig. 6, Table 1). This value is comparable to that of pure montmorillonite and is only surpassed 19 

by purified humic acids (Table 1). Albeit lower, the adsorption capacity of Z6 for double 20 

stranded DNA was still significantly higher than that of soil (Table 1).  21 

 22 

23 
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DISCUSSION 1 

Authenticity of the green sulfur bacterial DNA 2 

Analyses of ancient DNA are usually based on minute amounts of highly degraded template 3 

molecules and thus are subject to a considerable risk of contamination (Cooper and Poinar, 4 

2000). In order to avoid sources of extraneous DNA in the present study, subsampling of the 5 

sediment cores was performed in a separate, PCR-product-free laboratory in which green sulfur 6 

bacteria had never been worked with before, and a security level 2 laminar flow chamber 7 

dedicated to work with low DNA template number samples was used for subsequent DNA 8 

extraction and to set up amplification reactions. Each set of DNA extractions included controls 9 

for contamination of the chemicals and vessels employed. None of these extraction controls 10 

yielded an amplification product, indicating that no extraneous DNA from green sulfur bacteria 11 

had been introduced during DNA isolation. Furthermore, each amplification run comprised two 12 

reactions devoid of DNA template in order to control separately for a potential contamination of 13 

PCR reagents and tubes. These negative controls also did not yield any PCR product. Finally, 14 

quantification of fossil green sulfur bacterial DNA was performed in three independent parallels 15 

to test reproducibility of the results. 16 

Whereas parallel extraction trials for the identical sediment layer were not feasible due to the 17 

restricted availability of deep sea sediment samples, a comparison of the results from the 18 

consecutive sediment horizons further confirms that the DNA genuinely originated from these 19 

samples. Sequences of green sulfur bacteria were not only detected on a single occasion, but 20 

occurred in seven out of eight different sediment layers. Furthermore, amplification of green 21 

sulfur bacterial sequences was reproducible for the same extract (compare standard deviations 22 

for quantification of green sulfur bacterial amplification products in Fig. 1C). 23 

Three of the four sequence types obtained (Z1-C, S6-D, S8-G) were detected in only a single 24 

sample. It appears unlikely that each of the three sediment samples Z1, S6 and S8 was 25 

contaminated with yet another, different type of green sulfur bacterium. Two of these sequence 26 

types (S6-D, S8-G) have neither been isolated as a clone nor from a culture before. It is also 27 
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extremely unlikely that two samples were contaminated individually, yet by two different 1 

sequences which are not available in any laboratory world wide. Our phylogenetic analysis of the 2 

recovered sequences thus provides independent evidence for the conclusion that the green sulfur 3 

bacterial DNA is indigenous to the Mediterranean sediments. 4 

Fossil origin and mechanisms of persistence of green sulfur bacterial DNA 5 

Compared to the multitude of studies targeting higher organisms, studies of ancient bacteria have 6 

been limited to a few pathogenic species (Mycobacterium tuberculosis, M. leprae, Yersinia pestis 7 

and Treponema pallidum) or to intestinal bacteria, and cover a time period of only the last 5,400 8 

years (Rollo, 1998). Information on past bacterial communities in the environment is very sparse 9 

(Coolen and Overmann, 1998; Coolen et al., 2006; Willerslev et al., 2004b) which can be 10 

attributed to the difficulty to distinguish ancient from modern bacterial DNA. 11 

All cultured representatives of the green sulfur bacteria are obligately anaerobic 12 

photolithoautotrophs and, accordingly, require the simultaneous presence of light and sulfide for 13 

growth. The family Chlorobiaceae comprises all known green sulfur bacteria plus numerous 14 

environmental sequences (Overmann and Tuschak, 1997; Overmann et al., 1999; A. Manske and 15 

J. Overmann, submitted). Similar to their cultured relatives, all so-far-uncultured members of 16 

this group have been exclusively detected in illuminated sulfidic environments like the 17 

chemocline of lakes, lagoons or benthic microbial mats. As the sequences recovered in the 18 

present study clearly fall within this group, the available evidence indicates that they originated 19 

from obligately anaerobic photolithoautotrophs. All our attempts to enrich green sulfur bacteria 20 

by different cultivation methods (Overmann, 2001; Manske et al., 2005) failed, supporting the 21 

view that viable green sulfur bacteria do not exist in these sediments. In conclusion, the green 22 

sulfur bacterial sequences obtained in the present study are highly unlikely to originate from 23 

bacteria growing within the sediments. Rather, the cells grew outside the sediments and the 24 

aphotic portion of the water column and were subsequently deposited in Mediterranean deep sea 25 

sediments.  26 
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DNA spontaneously decays into 100 - 600 bp short fragments after its deposition in 1 

lacustrine sediments (Coolen and Overmann, 1998). Based on our data, green sulfur bacterial 2 

genome fragments at least 540-bp in size persisted in Mediterranean sapropels over 217,000 3 

years. Survival of ancient DNA in a lake sediment could be demonstrated for a time period of 4 

9,100 years (Coolen and Overmann, 1998) due to the short lifespan of this ecosystem. The 5 

partial 16S rRNA gene fragments obtained in this study are among the oldest authenticated 6 

ancient bacterial sequences available to date. For animals and plants, the oldest authenticated 7 

records come from 60,000-year-old remains of brown bears (Barnes et al., 2002), and from 8 

~400,000-year-old chloroplast DNA (Willerslev et al., 2003), respectively, both recovered from 9 

Alaskan permafrost. The age of the fossil 16S rRNA gene sequences of green sulfur bacteria 10 

detected in the present study falls well within this time frame. Based on the relatively high in situ 11 

temperature of 14°C, however, the efficient preservation of fossil DNA in eastern Mediterranean 12 

sediments must be attributed to factors other than low temperature. 13 

Besides low temperatures, the persistence of fossil DNA is significantly extended by high 14 

ionic strength, anoxic conditions, and rapid dehydration and adsorption of DNA (Lindahl, 1993; 15 

Poinar et al., 1996; 2003; Willerslev et al., 2004a). The ionic strength and anoxic conditions in 16 

eastern Mediterranean sediments are comparable to other sediment environments. Adsorption to 17 

clay and other mineral surfaces significantly decreases the degradation rates for organic 18 

compounds in soils (Jones and Edwards, 1998), and marine sediments (Keil et al., 1994) by up to 19 

five orders of magnitude. Adsorptive binding to hydroxyapatite retards the spontaneous decay of 20 

DNA (Lindahl, 1993). In addition to spontaneous hydrolysis, microbial DNase activity leads to 21 

rapid degradation of free DNA in water and sediments (Lorenz and Wackernagel, 1994), but is 22 

also effectively prevented by adsorption even in sandy sediments which bind DNA much less 23 

efficiently than the sapropels  (Romanowski et al., 1991; Crecchio and Stotzky, 1998). Based on 24 

our results, the outstanding adsorption capacity of eastern Mediterranean sediments, in particular 25 

of the sapropel matrix, represents the major reason for the efficient preservation of fossil DNA of 26 
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green sulfur bacteria. Potentially, sapropels may also represent important archives of fossil DNA 1 

from other microorganisms. 2 

Implications for the reconstruction of past ecosystems 3 

To date, isorenieratene and its degradation products have been used as an indicator of past water 4 

column anoxia (Passier et al., 1999; Menzel et al., 2002). Because of their very limited diversity, 5 

carotenoids do not permit a differentiation between species with contrasting physiology and 6 

ecology. In the eastern Mediterranean, isorenieratene has previously been shown to occur in ≥1.8 7 

million-year-old Pliocene sapropels (Passier et al., 1999; Menzel et al., 2002). However, only 8 

four of the 83 currently recognized sapropels (Emeis et al., 2000) have been investigated so far. 9 

It was therefore unknown whether isorenieratene represents a typical constituent of the 10 

sapropels. The present study provides the first instance of occurrence of isorenieratene in marine 11 

deposits which are sufficiently young to also harbor 16S rRNA gene sequences of green sulfur 12 

bacteria. The latter are high resolution fossil biomarkers which permit an improved assessment 13 

of their origin and hence a more detailed reconstruction of the paleoenvironment. 14 

All but one (Z1C) of the 16S rRNA gene sequences recovered were phylogenetically 15 

affiliated with typical freshwater or brackish water species, whereas no single representative of 16 

the marine group 1 could be detected. Secondly, the presence of green sulfur bacterial 16S rRNA 17 

genes in intermediate layers was unexpected since the latter were deposited under a fully 18 

oxygenated water column (Schmiedl et al., 1998). Theoretically, DNA could have reached 19 

intermediate layers through vertical percolation after deposition in the sapropel layers. However, 20 

vertical migration of fossil DNA fragments should be independent of their actual base sequence 21 

and, as a result, sequence types present in sapropels should also be detectable in the adjacent 22 

intermediate layers. Yet, phylotype C was detected in intermediate layer Z1, but not in the 23 

adjacent S1 (compare Fig. 4). This indicates that the strong adsorption to the sediment particles 24 

has effectively immobilized the fossil DNA of green sulfur bacteria. Thirdly, a long-distance 25 

transport of green sulfur bacterial biomarkers has been shown for North Atlantic deep-sea 26 
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sediments (Rosell-Melé et al., 1997). Indeed, a turbidite origin was proposed for the intermediate 1 

layer Z1 (K.-C. Emeis, pers. comm.) which contained the by far highest fraction of green sulfur 2 

bacterial DNA among all organic carbon lean intermediate layers. It thus appears feasible that at 3 

least the DNA of  green sulfur bacterial phylotypes affiliated with typical freshwater species may 4 

have originated from environments like coastal lagoons where these bacteria frequently form 5 

dense blooms. 6 

In conclusion, our results suggest that not all green sulfur bacteria deposited in the ancient 7 

Mediterranean Sea during the last 217,000 years were autochthonous but instead are more likely 8 

to have originated from Mediterranean coastal environments. Our cumulative evidence casts 9 

some doubts on the hypothesis of the presence of green sulfur bacteria in the open waters of the 10 

eastern Mediterranean and, by inference, questions the alleged past photic zone anoxia. A future 11 

isolation and physiological characterization of the two previously unknown phylotypes detected 12 

in the present study will help to more precisely assign a certain habitat, hence origin, to the fossil 13 

remains of green sulfur bacteria present in the sapropel layers. 14 

15 
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EXPERIMENTAL PROCEDURES 1 

Sampling and sample preparation 2 

A gravity core (#69-2SL) was obtained during cruise 40 leg 4 of the R/V Meteor on January 30, 3 

1998, at position 33°51,53'N and 24°54,46'E southeast of Crete. The core was collected at a 4 

depth of 2155 m and was subsampled employing the aseptic techniques developed for the 5 

recovery of fossil DNA from sediment samples (Coolen and Overmann, 1998; 2000). It was cut 6 

longitudinally which left behind a potentially contaminated surface. This surface was rapidly 7 

frozen with powdered dry ice and subsequently lifted off. Through the freshly exposed surface, 5 8 

cm3 subsamples were retrieved aseptically using sterile plastic syringes which had their ends cut 9 

off and were immediately stored in sterile vials at –800C until extraction.  10 

Precautions and controls to prevent contamination  11 

Preparation of sediment samples was performed directly after retrieval of sediment cores in the 12 

laboratory on board of the R/V Meteor, employing the aseptic DNA techniques established 13 

previously (Coolen and Overmann, 1998; Coolen et al., 2006). Green sulfur bacteria had never 14 

been introduced or worked with in these premises. Further precautions against contamination of 15 

the samples with foreign DNA included the use of a laminar flow hood dedicated to low 16 

template number samples. Prior to each use, the hood was UV-sterilized for 4 hours and all 17 

surfaces were subsequently sterilized with sodium hypochlorite. Nucleic acids-free disposable 18 

plastics were used throughout and autoclaved before use. All solutions were prepared in fresh 19 

double quartz-distilled water, sterile filtered, and autoclaved. As a control for contamination 20 

during DNA-extraction, two procedural blanks without sediment were subjected to the whole 21 

extraction and purification procedure along with the sediment samples. One µl of each of these 22 

extraction controls (corresponding to the average volume of sediment extracts used for 23 

amplifications) was included in subsequent PCR amplifications. As additional controls, each 24 

amplification included reactions without DNA template to independently control for 25 

contamination of PCR reagents. 26 
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Pigment analysis 1 

Pigments were extracted in the dark from 10 grams of freeze-dried and finely ground sediment 2 

samples. Acetone/methanol (7/2, v/v), acetone, and dichloromethane were used for successive 3 

extractions, followed by alkaline hydrolysis of the sediment with 6% KOH in methanol (Glaeser 4 

et al., 2002). To the latter, distilled water and dichloromethane were added and after phase 5 

separation, the organic phases were combined and concentrated by rotary evaporation. The 6 

extracts were subsequently dried under a flow of nitrogen. Individual pigments were quantified 7 

by reverse-phase HPLC (Glaeser et al., 2002) employing a NovaPak C18 end-capped 60Å 4 µm 8 

4.6 × 250 mm column (Waters) with a Spherisorb 5 ODS 2 4.6 × 10 mm guard column (Waters). 9 

The detection limit of this method is 1.0 ng isorenieratene·(g dry weight sediment)-1. 10 

For mass spectroscopy, the residue was redissolved in dichloromethane and applied to a 11 

silica column. The apolar carotenoids were eluted with dichloromethane, dried under nitrogen 12 

and the residue dissolved in acetone. This carotenoid fraction was then immediately analyzed on 13 

a HP 1100 series LC/MS equipped with an auto-injector and photodiode array detector. 14 

Separation was achieved on a ZORBAX Eclipse XDB-C18 column (2.1 × 150 mm, 5 µm; Agilent 15 

Technologies, USA), maintained at 25ºC, with a linear gradient from 100% solvent A to 100% 16 

solvent B in 50 min at a flow rate of 0.6 ml·min-1. Solvent A was methanol/water (4:1, v/v) and 17 

solvent B acetone/methanol/water (19:1:1, v/v/v). Total run time was 60 minutes. Detection was 18 

achieved by in-line UV-detection (250−700 nm) and positive ion APCI (Atmospheric Pressure 19 

Chemical Ionization) of the eluent in either scanning or Single Ion Monitoring (SIM) mode. 20 

Conditions for APCI-MS were as follows: nebulizer pressure 60 psi, vaporizer temperature 21 

325°C, drying gas (N2) flow 7 L·min-1 and temperature 350°C, capillary voltage 3000V, corona 4 22 

µA. Positive ion spectra were generated by scanning m/z 100-1000. In SIM mode m/z 529 23 

(protonated molecule of isorenieratene) was monitored. Isorenieratene was quantified by 24 

comparing its UV response at 454 nm (the λmax of isorenieratene in the mobile phase) to known 25 

amounts of an authentic β-carotene standard (Aldrich) and correcting for the difference in 26 

extinction coefficients (Britton, 1995). 27 
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Extraction of genomic DNA 1 

Each sediment sample was aliquoted in ten 2 ml bead-beat vials and 0.7 g of glass beads 2 

(0.1 mm diameter) and 0.9 ml lysis buffer (100 mM Tris-HCl, 500 mM sodium-EDTA and 3 

1 wt% SDS; pH 8.0) were added to each vial. The sediment samples were pre-heated for 5 4 

minutes at 70°C in a water bath. Cell-lysis was accomplished by bead-beating at 5,000 rpm for 5 

80 sec (Biospec Mini Bead-Beater; Bartlesville, Oklahoma, USA) followed by another 6 

incubation at 70°C for 30 min. Following centrifugation of the samples in a microfuge (2 min; 7 

14,000 rpm), the supernatants were transferred to a 45 ml teflon centrifuge tube. For extraction 8 

of extracellular, adsorbed DNA, each  pellet was resuspended in 0.8 ml of 0.12 M sodium 9 

phosphate buffer (pH 8.0) containing 1% wt/vol SDS, followed by a second round of preheating, 10 

bead-beating and heating. Following centrifugation, the supernatants were recovered. Finally, 11 

each subsample was washed three times with 0.8 ml of 0.12 M sodium phosphate buffer (without 12 

SDS). For each sediment, the supernatants of all subsamples  were pooled, yielding a total 13 

volume of about 40 ml.  14 

Organic carbon in Mediterranean sapropels  contains long chains of polymethylenic carbon 15 

(Petsch et al. 2001), which copurified with the genomic DNA and inhibited subsequent PCR. For 16 

removal of the kerogen, several consecutive purification steps were required. Most of the 17 

kerogen could be removed from the crude DNA extracts by adding 3 grams of autoclaved, acid 18 

washed polyvinylpolypyrrolidone (PVPP; Zhou et al., 1996) to each sample. After an incubation 19 

for 20 min on a rotary shaker, the samples were centrifuged for 20 min at 20,400 x g (Beckman 20 

J2-HS, München, Germany), and the supernatants were transferred to a new sterile centrifuge 21 

tube. Extractions with phenol, phenol/chloroform/isoamylalcohol, and chloroform followed 22 

(Sambrook et al., 1989) and the DNA was recovered by standard ethanol precipitation. Finally, 23 

the resulting pellet was washed with sterile double distilled water using a Centricon 50 24 

ultrafiltration unit (Amicon; Witten, Germany) and purified with the Wizard PCR-preps DNA-25 

purification kit (Promega, Mannheim, Germany). The DNA concentrations in the extracts were 26 

quantified by fluorescent dye binding with PicoGreen (MoBiTec, Göttingen, Germany). 27 
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Amplification of 16S rRNA genes of green sulfur bacteria 1 

16S rRNA sequences of green sulfur bacteria were selectively amplified with eubacterial primer 2 

341f and the group-specific primer GSB822r, using the previously published cycling conditions 3 

(Overmann et al., 1999). The phylum green sulfur bacteria consists of a crown group of closely 4 

related green sulfur bacteria sensu strictu (the family Chlorobiaceae) as well as an increasing 5 

number of deep-branching phylotypes which are all uncultured and hence of unknown 6 

physiology. However, all members of the crown group investigated to date are typical 7 

unicellular, obligate photolithoautotrophs. We reassessed the specificity of primer GSB822 by 8 

also including the novel database entries for 16S rRNA gene sequences. Of a total of 86 9 

sequences of Chlorobiaceae tested, 11 showed a base substitution (A for T) at the 3´-end of the 10 

target sequence: 5´-AATACTAGATGTTGG(A instead of T)CAT-3´. In three other phylotypes, 11 

different base substitutions were found. All but one of these sequences fell into group 4a (Fig. 5), 12 

while the remaining was a member of group 3. In contrast, all truly marine phylotypes contained 13 

the probe target sequence.  Based on this analysis, the PCR method was therefore found to be 14 

suitable to detect in particular the marine members of the green sulfur bacteria. 15 

For separation by DGGE, a 40 bp-long GC-clamp has to be added at one end of the PCR 16 

product during amplification, employing primer GC 341f which carries the GC clamp (5‘-17 

CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCC-3‘) at its 5´-end  (Muyzer et 18 

al., 1998)). Initial experiments revealed a significantly reduced detection limit of green sulfur 19 

bacterial 16S rRNA genes when GC341f was employed directly for amplification. Consequently, 20 

the GC clamp was added by performing 15 additional cycles with 1 µl of the primary 21 

amplification and with 0.5 pmoles each of  primers GC341f and GSB822r. 22 

In order to control for the specificity of the amplification conditions, genomic DNA of 23 

Chlorobium phaeobacteroides strain MN1 (Overmann et al., 1992) and Chl. phaeovibrioides 24 

DSMZ 269T were used as positive controls. Since the Bacteroidetes represent the sister group of 25 

the phylum green sulfur bacteria, DNA of Cytophaga sp. strain 2b served as a negative control. 26 

Purity of the PCR reagents was checked by including two reactions without DNA template in 27 
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each amplification trial. Possible contaminations during DNA extraction were checked by 1 

including reactions spiked with one µl of each of the extraction controls (see above).  2 

Denaturing gradient gel electrophoresis (DGGE) 3 

PCR-products were separated by DGGE (Muyzer et al., 1998) in a Bio-Rad D Gene system 4 

(Biorad, München, Germany). PCR samples were applied directly onto 6% (wt/vol) 5 

polyacrylamide gels (acrylamide/N,N'-methylene bisacrylamide ratio, 37:1 [w/w]) in 1 x TAE 6 

buffer (pH 7.4) which had been prepared from sterile solutions and were cast aseptically between 7 

sterilized glass plates. The gels contained a linear gradient of 30% to 70% denaturant (100% 8 

denaturant correspond to 7 M urea plus 40% [v/v] formamide). Electrophoresis proceeded for 5 h 9 

at 200 V and 60°C. Afterwards, gels were stained for 20 min with sterile ethidium bromide 10 

solution and photographed. Finally, individual fragments were excised with a sterile scalpel,    11 

the DNA was eluted in sterile 1 x TAE (pH 8.0) by electrophoresis (3 h, 200 V) in Centricon 50 12 

concentrators inserted into a Centrilutor Micro Electroelutor (Amicon, Witten, Germany).  13 

Sequencing and phylogenetic analysis 14 

One µl of the eluted DNA was reamplified with primers 341f and GSB840r. Primers and 15 

deoxyribonucleoside triphosphates were removed using the QIAquick PCR Purification Spin Kit 16 

(Qiagen, Hilden, Germany). After cycle sequencing with the SequiTherm EXCEL Long-Read 17 

Sequencing Kit-LC (Biozym, Hess. Oldendorf, Germany) and employing primers 341f and 18 

GSB840r, sequence data were collected with a LiCor-4000 automated sequencer (Lincoln, 19 

Nebraska, USA). 20 

Each sequence was checked for chimeras employing the CHECK_CHIMERA option of the 21 

ribosomal database project (RDP). The 16S rRNA gene sequences were then analyzed using the 22 

ARB phylogeny software package (Ludwig et al., 2004). The Fast Aligner V1.03 tool was used 23 

for automatic alignment and the resulting alignments were corrected based on the 16S rRNA 24 

secondary structure information for Chlorobium vibrioforme DSMZ 260T, as available through 25 

The Comparative RNA Web (CRW) Site (www.rna.icmb.utexas.edu; Cannone et al., 2002). 26 
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Phylogenetic trees were constructed including 16S rRNA gene sequences of available strains and 1 

environmental sequences. First, sequences longer than 1100 bp were used for the calculation, 2 

employing the MAXIMUM LIKELIHOOD algorithm (Fast DNA_ML). The shorter 3 

environmental sequences were inserted afterwards without changing overall tree topology 4 

employing the PARSIMONY INTERACTIVE tool implemented in the ARB software package. 5 

The 16S rRNA gene sequences obtained during the present study have been deposited in 6 

GenBank under accession numbers AF298531-AF298537. 7 

Quantification of DNA of green sulfur bacteria by dot blot hybridization 8 

For dot blot quantification, 16S rRNA gene sequences of green sulfur bacteria were amplified 9 

with an altered PCR protocol. Instead of a step down, primer annealing was performed at a 10 

constant temperature of 52°C for 40 s and 31 cycles. Samples were denatured for 7 min at 100°C 11 

and vacuum blotted onto positively charged nylon membranes (Boehringer Mannheim, 12 

Germany). The membrane was baked (25 min at 120°C) and pre-hybridized in 10 ml of DIG 13 

Easy Hyb buffer (Boehringer). Afterwards, 150 pmole of a highly specific probe for green sulfur 14 

bacteria (5’- TGCCACCCCTGTATC-3’; E. coli positions 532 to 546; Tuschak et al., 1999), 5’ 15 

labeled with dig-11-dUTP (MWG-Biotech, Germany), was added and hybridization was carried 16 

out for 12 h. After hybridization, the blot was washed twice for 5 min in 2 x SSC (150 mM 17 

NaCl, 15 mM Na-citrate, pH 7.0) plus 0.1% SDS, followed by two stringent washing steps 18 

(15 min in 0.1xSSC/0.1% SDS). The hybridization signal was detected by chemiluminescence 19 

with the DIG Luminescent Detection Kit (Boehringer). Lumi-Film (Boehringer) was exposed for 20 

30 min, developed and the image digitized with a flatbed scanner. For quantification of the 21 

individual dots, the ZERO-Dscan software (Scanalytics, Billerica, USA) was employed. 22 

Genomic DNA of Chlorobium phaeovibrioides DSMZ 269T was used for calibration. The 23 

homology of the 16S rRNA gene sequences of other Bacteria at the target site of probe 532 is 24 

low, which reflects the large phylogenetic distance of green sulfur bacteria to other bacteria 25 

(Overmann and Tuschak, 1997). Therefore we chose DNA of Cytophaga strain 2b (which, 26 
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however shows 5 mismatches) as a negative control for the specificity of the hybridization. For 1 

each sample, quantification was conducted in three independent parallels. The quantification was 2 

based on the assumption that genome sizes of green sulfur bacteria and the number of rRNA 3 

operons are similar. Based on the currently available information, these assumptions appear to be 4 

largely valid since genome sizes of green sulfur bacteria show comparatively little variation in 5 

length (1.97 to 3.13 Mb) and  typically comprise one (33% of the genomes) or two (66% of the 6 

genomes) rrn operons (http://genome.jgi-psf.org/draft_ microbes/). 7 

Adsorption capacity for DNA of the sapropels 8 

In order to study the potential protection of fossil DNA by adsorption, equilibrium adsorption 9 

isotherms were determined. Herring sperm DNA (Boehringer Mannheim) at concentrations 10 

between 1 and 10 µg·ml-1 was incubated for 12 hours with aliquots (5 mg dry weight·ml-1) of 11 

sapropel S6 and the intermediate layer Z6. Adsorption of DNA was observed to reach a 12 

maximum and therefore yielded the best fit with the Langmuir equation (Ogram et al., 1987) 13 

according to:  14 

     

! 

S = S
max

"
K "C

e

(1+ K "C
e
)

     (1) 15 

Equation (1) was fitted to the data points of the amount S of DNA adsorbed (µmol·(g dry wt)-1) 16 

and the concentration Ce of the substance remaining in solution (in µmol·ml-1). This yielded an 17 

estimate for the maximum adsorption capacity Smax (µmol·(g dry wt)-1) and the Langmuir affinity 18 

coefficient K (ml·µmol-1). For comparison, equilibrium adsorption isotherms of DNA for 19 

montmorillonite and cellulose were also measured.  20 

21 
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FIGURE LEGENDS 1 

Fig. 1. A. Total DNA content () at eight consecutive depths of core #69-2SL. The vertical 2 

positions of the sapropel layers (black rectangles) and of sampling depths are denoted on 3 

the right. B. DNA of green sulfur bacteria as fraction of total DNA (). C. Absolute 4 

amounts of green sulfur bacterial DNA as determined by dot blot quantification () and 5 

of the carotenoid isorenieratene (ο). Horizontal bars indicate one standard deviation. 6 

Fig. 2. Amplification products generated with primers GC341f and GSB822. Controls for 7 

contamination of PCR reagents (no template), for contamination with extraneous DNA 8 

(extraction controls, see Experimental procedures) and for primer specificity (Cytophaga 9 

sp. strain 2b) were included in each PCR run.  Chlorobium phaeovibrioides DSMZ 269T 10 

and Chlorobium phaeobacteroides strain MN1 served as positive controls. A negative 11 

image of an ethidium bromide-stained agarose gel is shown. 12 

Fig. 3. Dot blot quantification of fossil DNA after amplification of 2 ng each of sample DNA. 13 

The standard curve was obtained by using different amounts (given in pg) of genomic 14 

DNA of Chlorobium phaeovibrioides DSMZ 269T as template. As negative controls, two 15 

independent PCR amplifications were conducted either without DNA template (n.t.), with 16 

1 µl of the extraction controls (Extr., compare Experimental Procedures), or with 2 ng of 17 

genomic DNA of Cytophaga strain 2b (Cyt). 18 

Fig. 4. Separation of green sulfur bacterial 16S rRNA gene fragments by DGGE. For 19 

comparison, amplification products from the two brown-colored marine strains 20 

Chlorobium phaeovibrioides DSMZ 269T and Chl. phaeobacteroides MN1 (Overmann et 21 

al., 1992) were included. DNA bands used in the subsequent phylogenetic analyses are 22 

denoted by labels A through G. Asterisks denote sequences which did not yield 23 

unambiguous sequences. Six different melting types are marked with arrows. 24 

Fig. 5.  Phylogenetic position of the seven fossil partial 16S rRNA gene sequences of green 25 

sulfur bacteria (given in bold face; labeling refers to layer of origin plus the band no. 26 

according to Fig. 4) recovered from sapropels and intermediate layers. Currently 27 

recognized groups are indicated (Imhoff, 2003; denoted in rectangles). Groups comprising 28 

salt tolerant or salt-requiring strains marked by black rectangles. Bar indicates 0.1 fixed 29 

point mutations per nucleotide. Numbers at nodes give bootstrap values out of 100 30 

resamplings for phylogenetic trees calculated by Maximum Likelihood / Maximum 31 

Parsimony / Neighbor Joining methods. C., Chlorochromatium; Cba., Chlorobaculum, 32 

Chl., Chlorobium; Chp.; P. Pelochromatium; Pld., Pelodictyon.  33 
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 27 

Fig. 6. Equilibrium adsorption isotherms of double-stranded herring sperm DNA bound to 1 

sapropel S6 () and the intermediate layer Z6 (ο). Bars indicate one standard deviation. 2 

Lines indicate the curves fitted to the data according to the Langmuir equation (eq. 1, see 3 

text).  4 

5 
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Table 1. Parameters of the Langmuir equilibrium adsorption isotherms for DNA binding to   1 
    different adsorbers 2 

 3 

Adsorber Smax  
1 

 µmol·(g dry wt)-1 
K 
   (ml·µmol-1) 

Reference 

Humic acids (pH 4) 250.9 ± 72.4    7.2 ± 3.8 Crecchio and Stotzky, 
1998 

Humic acids (pH 3) 112.1 ± 19.1    9.2 ± 4.4 Crecchio and Stotzky, 
1998 

Sapropel S6 (50 mM MgCl2)   79.3 ± 2.8   447 ± 63 this work 
Intermediate layer Z6 
(50 mM Tris-HCl)2 

  18.0 ± 1.9   209 ± 116 this work 

Ca2+-montmorillonite          
(0.5 mM CaCl2) 

  64.0 ± 12.1   286 ± 129 Paget et al., 1992 

Mg2+-montmorillonite  
(50 mM MgCl2) 

  59.6 ± 6.3  41.8 ± 16.6 Barghorn and 
Overmann, unpubl. 

Mg2+-montmorillonite  
(2.0 mM MgCl2) 

  14.2 ± 0.7 4099 ± 1063 Paget et al., 1992 

Mg2+-montmorillonite  
(0.5 mM MgCl2) 

  12.6 ± 0.7   293 ± 48 Paget et al., 1992 

Na+-montmorillonite  
(25 mM NaCl) 

  1.76 ± 1.18   451 ± 706 Paget et al., 1992 

Mg2+-cellulose     
(50 mM MgCl2) 

 0.755 ± 0.103  74.6 ± 23.1 Barghorn and 
Overmann, unpubl. 

Memphis-soil 
 

       0.023        673 Ogram et al., 1987 

 4 
1 Molarity of DNA calculated as molarity of nucleotides.  5 
2 Due to precipitation in the presence of Mg++, adsorption was determined in 50 mM Tris-HCl. 6 

 7 
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