81 research outputs found

    Heat-Labile Enterotoxin: Beyond GM1 Binding

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) is a significant source of morbidity and mortality worldwide. One major virulence factor released by ETEC is the heat-labile enterotoxin LT, which is structurally and functionally similar to cholera toxin. LT consists of five B subunits carrying a single catalytically active A subunit. LTB binds the monosialoganglioside GM1, the toxin’s host receptor, but interactions with A-type blood sugars and E. coli lipopolysaccharide have also been identified within the past decade. Here, we review the regulation, assembly, and binding properties of the LT B-subunit pentamer and discuss the possible roles of its numerous molecular interactions

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF

    Learning biophysically-motivated parameters for alpha helix prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our goal is to develop a state-of-the-art protein secondary structure predictor, with an intuitive and biophysically-motivated energy model. We treat structure prediction as an optimization problem, using parameterizable cost functions representing biological "pseudo-energies". Machine learning methods are applied to estimate the values of the parameters to correctly predict known protein structures.</p> <p>Results</p> <p>Focusing on the prediction of alpha helices in proteins, we show that a model with 302 parameters can achieve a Q<sub><it>α </it></sub>value of 77.6% and an SOV<sub><it>α </it></sub>value of 73.4%. Such performance numbers are among the best for techniques that do not rely on external databases (such as multiple sequence alignments). Further, it is easier to extract biological significance from a model with so few parameters.</p> <p>Conclusion</p> <p>The method presented shows promise for the prediction of protein secondary structure. Biophysically-motivated elementary free-energies can be learned using SVM techniques to construct an energy cost function whose predictive performance rivals state-of-the-art. This method is general and can be extended beyond the all-alpha case described here.</p

    Specificity of the Type II Secretion Systems of Enterotoxigenic Escherichia coli and Vibrio cholerae for Heat-Labile Enterotoxin and Cholera Toxinâ–¿

    No full text
    The Gram-negative type II secretion (T2S) system is a multiprotein complex mediating the release of virulence factors from a number of pathogens. While an understanding of the function of T2S components is emerging, little is known about what identifies substrates for export. To investigate T2S substrate recognition, we compared mutations affecting the secretion of two highly homologous substrates: heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae. Each toxin consists of one enzymatic A subunit and a ring of five B subunits mediating the toxin's secretion. Here, we report two mutations in LT's B subunit (LTB) that reduce its secretion from ETEC without global effects on the toxin. The Q3K mutation reduced levels of secreted LT by half, and as with CT (T. D. Connell, D. J. Metzger, M. Wang, M. G. Jobling, and R. K. Holmes, Infect. Immun. 63:4091-4098, 1995), the E11K mutation impaired LT secretion. Results in vitro and in vivo show that these mutants are not degraded more readily than wild-type LT. The Q3K mutation did not significantly affect CT B subunit (CTB) secretion from V. cholerae, and the E11A mutation altered LT and CTB secretion to various extents, indicating that these toxins are identified as secretion substrates in different ways. The levels of mutant LTB expressed in V. cholerae were low or undetectable, but each CTB mutant expressed and secreted at wild-type levels in ETEC. Therefore, ETEC's T2S system seems to accommodate mutations in CTB that impair the secretion of LTB. Our results highlight the exquisitely fine-tuned relationship between T2S substrates and their coordinate secretion machineries in different bacterial species
    • …
    corecore