232 research outputs found

    Detection of Contact Binaries Using Sparse High Phase Angle Lightcurves

    Full text link
    We show that candidate contact binary asteroids can be efficiently identified from sparsely sampled photometry taken at phase angles >60deg. At high phase angle, close/contact binary systems produce distinctive lightcurves that spend most of the time at maximum or minimum (typically >1mag apart) brightness with relatively fast transitions between the two. This means that a few (~5) sparse observations will suffice to measure the large range of variation and identify candidate contact binary systems. This finding can be used in the context of all-sky surveys to constrain the fraction of contact binary near-Earth objects. High phase angle lightcurve data can also reveal the absolute sense of the spin.Comment: 4 pages, 4 figures, 1 table. Accepted for publication in ApJ

    A ring as a model of the main belt in planetary ephemerides

    Full text link
    We assess the ability of a solid ring to model a global perturbation induced by several thousands of main-belt asteroids. The ring is first studied in an analytical framework that provides an estimate of all the ring's parameters excepting mass. In the second part, numerically estimated perturbations on the Earth-Mars, Earth-Venus, and Earth-Mercury distances induced by various subsets of the main-belt population are compared with perturbations induced by a ring. To account for large uncertainties in the asteroid masses, we obtain results from Monte Carlo experiments based on asteroid masses randomly generated according to available data and the statistical asteroid model. The radius of the ring is analytically estimated at 2.8 AU. A systematic comparison of the ring with subsets of the main belt shows that, after removing the 300 most perturbing asteroids, the total main-belt perturbation of the Earth-Mars distance reaches on average 246 m on the 1969-2010 time interval. A ring with appropriate mass is able to reduce this effect to 38 m. We show that, by removing from the main belt ~240 asteroids that are not necessarily the most perturbing ones, the corresponding total perturbation reaches on average 472 m, but the ring is able to reduce it down to a few meters, thus accounting for more than 99% of the total effect.Comment: 18 pages, accepted in A&

    Constraining multiple systems with GAIA

    Get PDF
    GAIA will provide observations of some multiple asteroid and dwarf systems. These observations are a way to determine and improve the quantification of dynamical parameters, such as the masses and the gravity fields, in these multiple systems. Here we investigate this problem in the cases of Pluto's and Eugenia's system. We simulate observations reproducing an approximate planning of the GAIA observations for both systems, as well as the New Horizons observations of Pluto. We have developed a numerical model reproducing the specific behavior of multiple asteroid system around the Sun and fit it to the simulated observations using least-square method, giving the uncertainties on the fitted parameters. We found that GAIA will improve significantly the precision of Pluto's and Charon's mass, as well as Petit Prince's orbital elements and Eugenia's polar oblateness.Comment: 5 pages, accepted by Planetary and Space Science, Gaia GREAT-SSO-Pis

    Mass and density of B-type asteroid (702) Alauda

    Full text link
    Observations with the adaptive optics system on the Very Large Telescope reveal that outer main belt asteroid (702) Alauda has a small satellite with primary to secondary diameter ratio of \sim56. The secondary revolves around the primary in 4.9143 ±\pm 0.007 days at a distance of 1227 ±\pm 24 km, yielding a total system mass of (6.057 ±\pm 0.36) ×\times 1018^{18} kg. Combined with an IRAS size measurement, our data yield a bulk density for this B-type asteroid of 1570 ±\pm 500 kg~m3^{-3}.Comment: In press, ApJ 2011. 6 pages, 4 figure

    SIM_EXPLORE: Software for Directed Exploration of Complex Systems

    Get PDF
    Physics-based numerical simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. While such codes may provide the highest- fidelity representation of system behavior, they are often so slow to run that insight into the system is limited. Trying to understand the effects of inputs on outputs by conducting an exhaustive grid-based sweep over the input parameter space is simply too time-consuming. An alternative approach called "directed exploration" has been developed to harvest information from numerical simulators more efficiently. The basic idea is to employ active learning and supervised machine learning to choose cleverly at each step which simulation trials to run next based on the results of previous trials. SIM_EXPLORE is a new computer program that uses directed exploration to explore efficiently complex systems represented by numerical simulations. The software sequentially identifies and runs simulation trials that it believes will be most informative given the results of previous trials. The results of new trials are incorporated into the software's model of the system behavior. The updated model is then used to pick the next round of new trials. This process, implemented as a closed-loop system wrapped around existing simulation code, provides a means to improve the speed and efficiency with which a set of simulations can yield scientifically useful results. The software focuses on the case in which the feedback from the simulation trials is binary-valued, i.e., the learner is only informed of the success or failure of the simulation trial to produce a desired output. The software offers a number of choices for the supervised learning algorithm (the method used to model the system behavior given the results so far) and a number of choices for the active learning strategy (the method used to choose which new simulation trials to run given the current behavior model). The software also makes use of the LEGION distributed computing framework to leverage the power of a set of compute nodes. The approach has been demonstrated on a planetary science application in which numerical simulations are used to study the formation of asteroid families

    The Resolved Asteroid Program - Size, shape, and pole of (52) Europa

    Full text link
    With the adaptive optics (AO) system on the 10 m Keck-II telescope, we acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa on 2005 January 20. The epochs covered its rotation period and, by following its changing shape and orientation on the plane of sky, we obtained its triaxial ellipsoid dimensions and spin pole location. An independent determination from images at three epochs obtained in 2007 is in good agreement with these results. By combining these two data sets, along with a single epoch data set obtained in 2003, we have derived a global fit for (52) Europa of diameters (379x330x249) +/- (16x8x10) km, yielding a volume-equivalent spherical-diameter of 315 +/- 7 km, and a rotational pole within 7 deg of [RA; Dec] = [257,+12] in an Equatorial J2000 reference frame (ECJ2000: 255,+35). Using the average of all mass determinations available forEuropa, we derive a density of 1.5 +/- 0.4, typical of C-type asteroids. Comparing our images with the shape model of Michalowski et al. (A&A 416, 2004), derived from optical lightcurves, illustrates excellent agreement, although several edge features visible in the images are not rendered by the model. We therefore derived a complete 3-D description of Europa's shape using the KOALA algorithm by combining our imaging epochs with 4 stellar occultations and 49 lightcurves. We use this 3-D shape model to assess these departures from ellipsoidal shape. Flat facets (possible giant craters) appear to be less distinct on (52) Europa than on other C-types that have been imaged in detail. We show that fewer giant craters, or smaller craters, is consistent with its expected impact history. Overall, asteroid (52) Europa is still well modeled as a smooth triaxial ellipsoid with dimensions constrained by observations obtained over several apparitions.Comment: Accepted for publication in Icaru

    Nanoclay Modification of Shape Memory Polyurethane

    Get PDF
    Effect of nanoclay modification on the properties of polytetramethylene oxide-based polyurethane was examined. Nanoclay was dispersed in polyurethane wherein the clay content was varied from 1 to 5 wt.%. The nanocomposites were characterized by thermal, FTIR, XRD and thermo-mechanical analyses and their shape memory properties were evaluated. Morphology was examined by TEM analysis. Bending test was adopted for the evaluation of shape memory property. Increase in clay content resulted an increase in transition temperature. Tensile strength and modulus increased proportional to nanoclay content. The elongation decreased with clay content. Intercalated structure of clay in the PU matrix was observed from XRD studies, which was confirmed by TEM analysis. Modulus ratio showed a decreasing trend with nanoclay content. This resulted in decreased shape recovery characteristics. Highest shape recovery of 92% was observed for PU with 1 wt.% clay content. Moderate nanoclay leveling is conducive to deriving mechanically stronger PU without loss of shape memory characteristics

    Physical Properties of (2) Pallas

    Full text link
    We acquired and analyzed adaptive-optics imaging observations of asteroid (2) Pallas from Keck II and the Very Large Telescope taken during four Pallas oppositions between 2003 and 2007, with spatial resolution spanning 32-88 km (image scales 13-20 km/pix). We improve our determination of the size, shape, and pole by a novel method that combines our AO data with 51 visual light-curves spanning 34 years of observations as well as occultation data. The shape model of Pallas derived here reproduces well both the projected shape of Pallas on the sky and light-curve behavior at all the epochs considered. We resolved the pole ambiguity and found the spin-vector coordinates to be within 5 deg. of [long, lat] = [30 deg., -16 deg.] in the ECJ2000.0 reference frame, indicating a high obliquity of ~84 deg., leading to high seasonal contrast. The best triaxial-ellipsoid fit returns radii of a=275 km, b= 258 km, and c= 238 km. From the mass of Pallas determined by gravitational perturbation on other minor bodies [(1.2 +/- 0.3) x 10-10 Solar Masses], we derive a density of 3.4 +/- 0.9 g.cm-3 significantly different from the density of C-type (1) Ceres of 2.2 +/- 0.1 g.cm-3. Considering the spectral similarities of Pallas and Ceres at visible and near-infrared wavelengths, this may point to fundamental differences in the interior composition or structure of these two bodies. We define a planetocentric longitude system for Pallas, following IAU guidelines. We also present the first albedo maps of Pallas covering ~80% of the surface in K-band. These maps reveal features with diameters in the 70-180 km range and an albedo contrast of about 6% wrt the mean surface albedo.Comment: 16 pages, 8 figures, 6 table

    The Origin of (90) Antiope From Component-Resolved Near-Infrared Spectroscopy

    Full text link
    The origin of the similary-sized binary asteroid (90) Antiope remains an unsolved puzzle. To constrain the origin of this unique double system, we recorded individual spectra of the components using SPIFFI, a near-infrared integral field spectrograph fed by SINFONI, an adaptive optics module available on VLT-UT4. Using our previously published orbital model, we requested telescope time when the separation of the components of (90) Antiope was larger than 0.087", to minimize the contamination between components, during the February 2009 opposition. Several multi-spectral data-cubes in J band (SNR=40) and H+K band (SNR=100) were recorded in three epochs and revealed the two components of (90) Antiope. After developing a specific photometric extraction method and running an error analysis by Monte-Carlo simulations, we successfully extracted reliable spectra of both components from 1.1 to 2.4 um taken on the night of February 21, 2009. These spectra do not display any significant absorption features due to mafic mineral, ices, or organics, and their slopes are in agreement with both components being C- or Cb- type asteroids. Their constant flux ratio indicates that both components' surface reflectances are quite similar, with a 1-sigma variation of 7%. By comparison with 2MASS J, H, K color distribution of observed Themis family members, we conclude that both bodies were most likely formed at the same time and from the same material. The similarly-sized system could indeed be the result of the breakup of a rubble-pile proto-Antiope into two equal-sized bodies, but other scenarios of formation implying a common origin should also be considered.Comment: 46 pages, 1 table, 11 figures accepted for publication to Icaru
    corecore