310 research outputs found

    Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers

    Full text link
    We report direct experimental evidence of room temperature spin filtering in magnetic tunnel junctions (MTJs) containing CoFe2O4 tunnel barriers via tunneling magnetoresistance (TMR) measurements. Pt(111)/CoFe2O4(111)/gamma-Al2O3(111)/Co(0001) fully epitaxial MTJs were grown in order to obtain a high quality system, capable of functioning at room temperature. Spin polarized transport measurements reveal significant TMR values of -18% at 2 K and -3% at 290 K. In addition, the TMR ratio follows a unique bias voltage dependence that has been theoretically predicted to be the signature of spin filtering in MTJs containing magnetic barriers. CoFe2O4 tunnel barriers therefore provide a model system to investigate spin filtering in a wide range of temperatures.Comment: 6 pages, 3 figure

    Long-term variability of AGN at hard X-rays

    Get PDF
    Variability at all observed wavelengths is a distinctive property of AGN. Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Swift/BAT offers the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. We study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80% of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10% larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies >~ 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).Comment: 17 pages, 11 figures, accepted for publication in A&

    Exchange bias in GeMn nanocolumns: the role of surface oxidation

    Full text link
    We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K) in a magnetic field as low as 0.25 T. This exchange bias is attributed to the interface coupling between the ferromagnetic nanocolumns and the antiferromagnetic MnO-like caps. The effect enhancement is achieved by depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure

    In-flight calibration of the INTEGRAL/IBIS mask

    Full text link
    Since the release of the INTEGRAL Offline Scientific Analysis (OSA) software version 9.0, the ghost busters module has been introduced in the INTEGRAL/IBIS imaging procedure, leading to an improvement of the sensitivity around bright sources up to a factor of 7. This module excludes in the deconvolution process the IBIS/ISGRI detector pixels corresponding to the projection of a bright source through mask elements affected by some defects. These defects are most likely associated with screws and glue fixing the IBIS mask to its support. Following these major improvements introduced in OSA 9, a second order correction is still required to further remove the residual noise, now at a level of 0.2-1% of the brightest source in the field of view. In order to improve our knowledge of the IBIS mask transparency, a calibration campaign has been carried out during 2010-2012. We present here the analysis of these data, together with archival observations of the Crab and Cyg X-1, that allowed us to build a composite image of the mask defects and to investigate the origin of the residual noise in the IBIS/ISGRI images. Thanks to this study, we were able to point out a simple modification of the ISGRI analysis software that allows to significantly improve the quality of the images in which bright sources are detected at the edge of the field of view. Moreover, a refinement of the area excluded by the ghost busters module is considered, and preliminary results show improvements to be further tested. Finally, this study indicates further directions to be investigated for improving the ISGRI sensitivity, such as taking into account the thickness of the screws in the mask model or studying the possible discrepancy between the modeled and actual mask element bridges.Comment: accepted for publication in the proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" 9th INTEGRAL Workshop, October 15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds. A. Goldwurm, F. Lebrun and C. Winkler, (http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id 154; 6 pages, 4 figures, see the PoS website for the full resolution versio

    Discovery of a highly energetic pulsar associated with IGR J14003-6326 in a young uncataloged Galactic supernova remnant G310.6-1.6

    Full text link
    We report the discovery of 31.18 ms pulsations from the INTEGRAL source IGR J14003-6326 using the Rossi X-ray Timing Explorer (RXTE). This pulsar is most likely associated with the bright Chandra X-ray point source lying at the center of G310.6-1.6, a previously unrecognised Galactic composite supernova remnant with a bright central non-thermal radio and X-ray nebula, taken to be the pulsar wind nebula (PWN). PSR J1400-6325 is amongst the most energetic rotation-powered pulsars in the Galaxy, with a spin-down luminosity of Edot = 5.1E+37 erg.s-1. In the rotating dipole model, the surface dipole magnetic field strength is B_s = 1.1E+12 G and the characteristic age tau_c = P/2Pdot = 12.7 kyr. The high spin-down power is consistent with the hard spectral indices of the pulsar and the nebula of 1.22 +/- 0.15 and 1.83 +/- 0.08, respectively, and a 2-10 keV flux ratio F_PWN/F_PSR ~ 8. Follow-up Parkes observations resulted in the detection of radio emission at 10 and 20 cm from PSR J1400-6325 at a dispersion measure of ~ 560 cm-3 pc, which implies a relatively large distance of 10 +/- 3 kpc. However, the resulting location off the Galactic Plane of ~ 280 pc would be much larger than the typical thickness of the molecular disk, and we argue that G310.6-1.6 lies at a distance of ~ 7 kpc. There is no gamma-ray counterpart to the nebula or pulsar in the Fermi data published so far. A multi-wavelength study of this new composite supernova remnant, from radio to very-high energy gamma-rays, suggests a young (< 1000 yr) system, formed by a sub-energetic (~ 1E+50 ergs), low ejecta mass (M_ej ~ 3 Msun) SN explosion that occurred in a low-density environment (n_0 ~ 0.01 cm-3).Comment: 9 pages, 6 figures, 2 tables. Accepted for publication in ApJ (after responding to referee's comments, expanded version after the radio detection of the pulsar

    Electrical detection of spin accumulation in a p-type GaAs quantum well

    Full text link
    We report on experiments in which a spin-polarized current is injected from a GaMnAsGaMnAs ferromagnetic electrode into a GaAsGaAs quantum well through an AlAs barrier. The resulting spin polarization in the GaAs well is detected by measuring how the current, tunneling to a second GaMnAsGaMnAs ferromagnetic electrode, depends on the orientation of its magnetization. Our results can be accounted for the non-relaxed spin splitting of the chemical potential, that is spin accumulation, in the GaAsGaAs well. We discuss the conditions on the hole spin relaxation time in GaAs that are required to obtain the large effects we observe.Comment: 4 pages - 2 figues; one added note; some numbers corrected on page

    Semiconductors between spin-polarized source and drain

    Full text link
    Injecting spins into a semiconductor channel and transforming the spin information into a significant electrical output signal is a long standing problem in spintronics. Actually, this is the prerequisite of several concepts of spin transistor. In this tutorial article, we discuss the general problem of spin transport in a nonmagnetic channel between source and drain. Two problems must be mastered: i) In the diffusive regime, the injection of a spin polarized current from a magnetic metal beyond the ballistic transport zone requires the insertion of a spin dependent and large enough interface resistance. ii) In both the diffusive and ballistic regimes, and whatever the metallic or semiconducting character of the source/drain, a small enough interface resistance is the condition to keep the dwell time shorter than the spin lifetime and thus to conserve the spin accumulation-induced output signal at an optimum level. Practically, the main difficulties come from the second condition. In our presentation of experimental results, we show why the transformation of spin information into a large electrical signal has been more easily achieved with carbon nanotubes than with semiconductors and we discuss how the situation could be improved in the later case
    corecore