1,321 research outputs found

    Kiwi forego vison in the guidance of their nocturnal activities

    Get PDF
    We propose that the Kiwi visual system has undergone adaptive regression evolution driven by the trade-off between the relatively low rate of gain of visual information that is possible at low light levels, and the metabolic costs of extracting that information

    Supplementary Figure 1

    Get PDF
    Supplemental data for Thalamic Gating of Auditory Responses in Telencephalic Song Control Nuclei

    Thalamic Gating of Auditory Responses in Telencephalic Song Control Nuclei

    Get PDF
    In songbirds, nucleus Uvaeformis (Uva) is the sole thalamic input to the telencephalic nucleus HVC (used as a proper name), a sensorimotor structure essential to learned song production that also exhibits state dependent responses to auditory presentation of the bird’s own song (BOS). The role of Uva in influencing HVC auditory activity is unknown. Using in vivo extracellular and intracellular recordings in urethane-anesthetized zebra finches, we characterized the auditory properties of Uva and examined its influence on auditory activity in HVC and in the telencephalic nucleus interface (NIf), the main auditory afferent of HVC and a corecipient of Uva input. We found robust auditory activity in Uva and determined that Uva is innervated by the ventral nucleus of lateral lemniscus, an auditory brainstem component. Thus, Uva provides a direct linkage between the auditory brainstem and HVC. Although low-frequency electrical stimulation in Uva elicited short-latency depolarizing postsynaptic potentials in HVC neurons, reversibly silencing Uva exerted little effect on BOS-evoked activity in HVC neurons. However, high-frequency stimulation in Uva suppressed auditory-evoked synaptic and suprathreshold activity in all HVC neuron types, a process accompanied by decreased input resistance of individual HVC neurons. Furthermore, high-frequency stimulation in Uva simultaneously suppressed auditory activity in HVC and NIf. These results suggest that Uva can gate auditory responses in HVC through a mechanism that involves inhibition local to HVC as well as withdrawal of auditory-evoked excitatory drive from NIf. Thus, Uva could play an important role in state-dependent gating of auditory activity in telencephalic sensorimotor structures important to learned vocal control

    Global tropospheric ozone modelling:quantifying errors due to grid resolution.

    Get PDF
    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NO x by convection is overestimated at coarse resolution

    Evidence for an Auditory Fovea in the New Zealand Kiwi (Apteryx mantelli)

    Get PDF
    Kiwi are rare and strictly protected birds of iconic status in New Zealand. Yet, perhaps due to their unusual, nocturnal lifestyle, surprisingly little is known about their behaviour or physiology. In the present study, we exploited known correlations between morphology and physiology in the avian inner ear and brainstem to predict the frequency range of best hearing in the North Island brown kiwi. The mechanosensitive hair bundles of the sensory hair cells in the basilar papilla showed the typical change from tall bundles with few stereovilli to short bundles with many stereovilli along the apical-to-basal tonotopic axis. In contrast to most birds, however, the change was considerably less in the basal half of the epithelium. Dendritic lengths in the brainstem nucleus laminaris also showed the typical change along the tonotopic axis. However, as in the basilar papilla, the change was much less pronounced in the presumed high-frequency regions. Together, these morphological data suggest a fovea-like overrepresentation of a narrow high-frequency band in kiwi. Based on known correlations of hair-cell microanatomy and physiological responses in other birds, a specific prediction for the frequency representation along the basilar papilla of the kiwi was derived. The predicted overrepresentation of approximately 4-6 kHz matches potentially salient frequency bands of kiwi vocalisations and may thus be an adaptation to a nocturnal lifestyle in which auditory communication plays a dominant role

    Atomic Carbon in M82: Physical conditions derived from simultaneous observations of the [CI] fine structure submillimeter wave transitions

    Get PDF
    We report the first extragalactic detection of the neutral carbon [CI] 3P2-3P1 fine structure line at 809 GHz. The line was observed towards M82 simultaneously with the 3P1-3P0 line at 492 GHz, providing a precise measurement of the J=2-1/J=1-0 integrated line ratio of 0.96 (on a [K km s^-1] -scale). This ratio constrains the [CI] emitting gas to have a temperature of at least 50 K and a density of at least 10^4 cm^-3. Already at this minimum temperature and density, the beam averaged CI-column density is large, 2.1 10^18 cm^-2, confirming the high CI/CO abundance ratio of approximately 0.5 estimated earlier from the 492 GHz line alone. We argue that the [CI] emission from M82 most likely arises in clouds of linear size around a few pc with a density of about 10^4 cm^-3 or slightly higher and temperatures of 50 K up to about 100 K.Comment: 4 pages, 2 figures, ApJL in press, postscript also available at ftp://apollo.ph1.uni-koeln.de/pub/stutzki/m82_pap.ps.gz e-mail-contact:[email protected]

    Diagnostic Accuracy of a MR Protocol Acquired with and without Endorectal Coil for Detection of Prostate Cancer: A Multicenter Study

    Full text link
    Introduction The purpose of this study was to compare diagnostic accuracy of a prostate multiparametric magnetic resonance imaging (mpMRI) protocol for detection of prostate cancer between images acquired with and without en-dorectal coil (ERC). Materials This study was approved by the regional ethics committee. Between 2014 and 2015, 33 patients (median age 51.3 years; range 42.1-77.3 years) who underwent prostate-MRI at 3T scanners at 2 different institutions, acquired with (mpMRI) and without (mpMRI) ERC and who received radical prostatectomy, were included in this retrospective study. Two expert readers (R1, R2) attributed a PI-RADS version 2 score for the most suspect (i. e. index) lesion for mpMRI and mpMRI. Sensitivity and positive predictive value for detection of index lesions were assessed using 2 × 2 contingency tables. Differences between groups were tested using the McNemar test. Whole-mount histopathology served as reference standard. Results On a quadrant-basis cumulative sensitivity ranged between 0.61-0.67 and 0.76-0.88 for mpMRI and mpMRI protocols, respectively (p > 0.05). Cumulative positive predictive value ranged between 0.80-0.81 and 0.89-0.91 for mpMRI and mpMRI protocols, respectively. The differences were not statistically significant for R1 (p = 0.267) or R2 (p = 0.508). Conclusion Our results suggest that there may be no significant differences for detection of prostate cancer between images acquired with and without an ERC

    Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment

    Get PDF
    Abstract. We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitudedependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are computed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40 % less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be • 10%. The GEOS-CHEM model captures 50 % and 60 % of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias. 1

    The neutral gas extent of galaxies as derived from weak intervening CaII absorbers

    Full text link
    (Abridged) We present a systematic study of weak intervening CaII absorbers at low redshift (z<0.5), based on the analysis of archival high resolution (R>45,000) optical spectra of 304 quasars and active galactic nuclei observed with VLT/UVES. Along a total redshift path of Dz~100 we detected 23 intervening CaII absorbers in both the CaII H & K lines, with rest frame equivalent widths W_r,3934=15-799 mA and column densities log N(CaII)=11.25-13.04. We obtain a bias corrected number density of weak intervening CaII absorbers of dN/dz=0.117+-0.044 at z=0.35 for absorbers with log N(CaII)>11.65. This is ~2.6 times the value obtained for damped Lyman alpha absorbers (DLAs) at low redshift. From ionization modeling we conclude that intervening CaII absorption with log N(CaII)>11.5 arises in optically thick neutral gas in DLAs, sub-DLAs and Lyman limit systems (LLS) at HI column densities of log N(HI)>17.4. The relatively large cross section of these absorbers together with the frequent detection of CaII absorption in high velocity clouds (HVCs) in the halo of the Milky Way suggests that a considerable fraction of the intervening CaII systems trace dusty neutral gas structures in the halos and circumgalactic environment of galaxies (i.e., they are HVC analogs). Considering all galaxies with luminosities L>0.05L* we calculate that the characteristic radial extent of (partly) neutral gas clouds with log N(HI)>17.4 around low-redshift galaxies is R_HVC ~ 55 kpc.Comment: 20 pages, 15 figures; A&A, in press; this revision contains several changes that improve clarity of presentation reflecting the suggestions made by the refere
    • …
    corecore