841 research outputs found
Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links
We identify 998 closed hyperbolic 3-manifolds whose volumes are rationally
related to Dedekind zeta values, with coprime integers and giving for a manifold M
whose invariant trace field has a single complex place, discriminant ,
degree , and Dedekind zeta value . The largest numerator of the
998 invariants of Hodgson-Weeks manifolds is, astoundingly,
; the largest denominator is merely
b=9. We also study the rational invariant a/b for single-complex-place cusped
manifolds, complementary to knots and links, both within and beyond the
Hildebrand-Weeks census. Within the censi, we identify 152 distinct Dedekind
zetas rationally related to volumes. Moreover, 91 census manifolds have volumes
reducible to pairs of these zeta values. Motivated by studies of Feynman
diagrams, we find a 10-component 24-crossing link in the case n=2 and D=-20. It
is one of 5 alternating platonic links, the other 4 being quartic. For 8 of 10
quadratic fields distinguished by rational relations between Dedekind zeta
values and volumes of Feynman orthoschemes, we find corresponding links.
Feynman links with D=-39 and D=-84 are missing; we expect them to be as
beautiful as the 8 drawn here. Dedekind-zeta invariants are obtained for knots
from Feynman diagrams with up to 11 loops. We identify a sextic 18-crossing
positive Feynman knot whose rational invariant, a/b=26, is 390 times that of
the cubic 16-crossing non-alternating knot with maximal D_9 symmetry. Our
results are secure, numerically, yet appear very hard to prove by analysis.Comment: 53 pages, LaTe
Bad semidefinite programs: they all look the same
Conic linear programs, among them semidefinite programs, often behave
pathologically: the optimal values of the primal and dual programs may differ,
and may not be attained. We present a novel analysis of these pathological
behaviors. We call a conic linear system {\em badly behaved} if the
value of is finite but the dual program has no
solution with the same value for {\em some} We describe simple and
intuitive geometric characterizations of badly behaved conic linear systems.
Our main motivation is the striking similarity of badly behaved semidefinite
systems in the literature; we characterize such systems by certain {\em
excluded matrices}, which are easy to spot in all published examples.
We show how to transform semidefinite systems into a canonical form, which
allows us to easily verify whether they are badly behaved. We prove several
other structural results about badly behaved semidefinite systems; for example,
we show that they are in in the real number model of computing.
As a byproduct, we prove that all linear maps that act on symmetric matrices
can be brought into a canonical form; this canonical form allows us to easily
check whether the image of the semidefinite cone under the given linear map is
closed.Comment: For some reason, the intended changes between versions 4 and 5 did
not take effect, so versions 4 and 5 are the same. So version 6 is the final
version. The only difference between version 4 and version 6 is that 2 typos
were fixed: in the last displayed formula on page 6, "7" was replaced by "1";
and in the 4th displayed formula on page 12 "A_1 - A_2 - A_3" was replaced by
"A_3 - A_2 - A_1
Thirty-two Goldbach Variations
We give thirty-two diverse proofs of a small mathematical gem--the
fundamental Euler sum identity zeta(2,1)=zeta(3) =8zeta(\bar 2,1). We also
discuss various generalizations for multiple harmonic (Euler) sums and some of
their many connections, thereby illustrating both the wide variety of
techniques fruitfully used to study such sums and the attraction of their
study.Comment: v1: 34 pages AMSLaTeX. v2: 41 pages AMSLaTeX. New introductory
material added and material on inequalities, Hilbert matrix and Witten zeta
functions. Errors in the second section on Complex Line Integrals are
corrected. To appear in International Journal of Number Theory. Title change
Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k
Euler sums (also called Zagier sums) occur within the context of knot theory
and quantum field theory. There are various conjectures related to these sums
whose incompletion is a sign that both the mathematics and physics communities
do not yet completely understand the field. Here, we assemble results for
Euler/Zagier sums (also known as multidimensional zeta/harmonic sums) of
arbitrary depth, including sign alternations. Many of our results were obtained
empirically and are apparently new. By carefully compiling and examining a huge
data base of high precision numerical evaluations, we can claim with some
confidence that certain classes of results are exhaustive. While many proofs
are lacking, we have sketched derivations of all results that have so far been
proved.Comment: 19 pages, LaTe
Special values of multiple polylogarithms
Historically, the polylogarithm has attracted specialists and non-specialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and high-energy physics. More recently, we have been forced to consider multidimensional extensions encompassing the classical polylogarithm, Euler sums, and the Riemann zeta function. Here, we provide a general framework within which previously isolated results can now be properly understood. Applying the theory developed herein, we prove several previously conjectured evaluations, including an intriguing conjecture of Don Zagier
Global Behavior of the Douglas-Rachford Method for a Nonconvex Feasibility Problem
In recent times the Douglas-Rachford algorithm has been observed empirically
to solve a variety of nonconvex feasibility problems including those of a
combinatorial nature. For many of these problems current theory is not
sufficient to explain this observed success and is mainly concerned with
questions of local convergence. In this paper we analyze global behavior of the
method for finding a point in the intersection of a half-space and a
potentially non-convex set which is assumed to satisfy a well-quasi-ordering
property or a property weaker than compactness. In particular, the special case
in which the second set is finite is covered by our framework and provides a
prototypical setting for combinatorial optimization problems
A critical look at the role of the bare parameters in the renormalization of Phi-derivable approximations
We revisit the renormalization of Phi-derivable approximations from a
slightly different point of view than the one which is usually followed in
previous works. We pay particular attention to the question of the existence of
a solution to the self-consistent equation that defines the two-point function
in the Cornwall-Jackiw-Tomboulis formalism and to the fact that some of the
ultraviolet divergences which appear if one formally expands the solution in
powers of the bare coupling do not always appear as divergences at the level of
the solution itself. We discuss these issues using a particular truncation of
the Phi functional, namely the simplest truncation which brings non-trivial
momentum and field dependence to the two-point function.Comment: 30 pages, 12 figure
Global convergence of a non-convex Douglas-Rachford iteration
We establish a region of convergence for the proto-typical non-convex
Douglas-Rachford iteration which finds a point on the intersection of a line
and a circle. Previous work on the non-convex iteration [2] was only able to
establish local convergence, and was ineffective in that no explicit region of
convergence could be given
- …