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Abstract

Conic linear programs, among them semidefinite programs, often behave pathologically: the
optimal values of the primal and dual programs may differ, and may not be attained. We present
a novel analysis of these pathological behaviors. We call a conic linear system Ax ≤K b badly
behaved if the value of sup {〈c, x〉|Ax ≤K b} is finite but the dual program has no solution with
the same value for some c. We describe simple and intuitive geometric characterizations of badly
behaved conic linear systems. Our main motivation is the striking similarity of badly behaved
semidefinite systems in the literature; we characterize such systems by certain excluded matrices,
which are easy to spot in all published examples.

We show how to transform semidefinite systems into a canonical form, which allows us to
easily verify whether they are badly behaved. We prove several other structural results about
badly behaved semidefinite systems; for example, we show that they are in NP ∩ co-NP in the
real number model of computing. As a byproduct, we prove that all linear maps that act on
symmetric matrices can be brought into a canonical form; this canonical form allows us to easily
check whether the image of the semidefinite cone under the given linear map is closed.

Key words: conic linear programming; semidefinite programming; duality; closedness of the linear
image of a closed convex cone; pathological semidefinite programs
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1 Introduction

Many problems in engineering, combinatorial optimization, machine learning, and related fields can
be formulated as the primal-dual pair of conic linear programs

sup 〈c, x〉 inf 〈b, y〉
(Pc) s.t. Ax ≤K b s.t. y ≥K∗ 0 (Dc)

A∗y = c,
∗Department of Statistics and Operations Research, University of North Carolina at Chapel Hill
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where A : X → Y is a linear map between finite dimensional Euclidean spaces X and Y, A∗ is its
adjoint, K ⊆ Y is a closed, convex cone, K∗ is its dual cone, and s ≤K t means t− s ∈ K. Note that
the subscript c refers to the objective of the primal problem.

Problems (Pc) and (Dc) generalize linear programs and share some of the duality theory of linear
programming. For instance, a pair of feasible solutions always satisfies the weak duality inequality
〈c, x〉 ≤ 〈b, y〉. However, in conic linear programming pathological phenomena occur: the optimal
values of (Pc) and of (Dc) may differ, and they may not be attained.

In particular, semidefinite programs (SDPs) and second order conic programs (SOCPs) — probably
the most useful and pervasive conic linear programs — often behave pathologically: for a variety of
examples we refer to the textbooks [6, 37, 11, 3, 42] surveys [44, 41, 27] and research papers [34, 1, 43].
Pathological conic LPs are both theoretically interesting and often difficult, or impossible to solve
numerically.

These pathologies arise, since the linear image of a closed convex cone is not always closed. For
recent studies about when such sets are closed (or not), see e.g., [4, 2, 29]. Three approaches (which
we review in detail below) can help to avoid or remedy the pathologies: one can impose a constraint
qualification (CQ), such as Slater’s condition; one can regularize (Pc)-(Dc) using a facial reduction
algorithm [16, 46, 31]; or write an extended dual [34, 24], which uses extra variables and constraints.
However, such CQs often do not hold, and neither facial reduction algorithms nor extended duals can
help solve all pathological instances.

We started this research observing that pathological SDPs in the literature look curiously similar
and one of our main goals is to find the root cause of the similarity. We focus on the system underlying
(Pc) and call

Ax ≤K b (P )

badly behaved if there exists c such that (Dc) either does not attain its value or its value differs from
the value of (Pc). We call (P ) well behaved if it is not badly behaved.

Main contributions of the paper:

(1) In Theorem 1 of Section 2 we characterize when the system (P ) is badly or well behaved. At the
heart of Theorem 1 is a simple geometric condition that involves the set of feasible directions at
z ∈ K, i.e.,

{ y | z + εy ∈ K for some ε > 0 },

and z is chosen as a certain slack in (P ).

In Theorem 1 we unify two well-known (and seemingly unrelated) conditions for (P ) to be well
behaved: the first is Slater’s condition, and the second requires K to be polyhedral.

Theorem 1 relies on a result on the closedness of the linear image of a closed convex cone from
[29] (which we recap in Lemma 1).

(2) In Section 3 we characterize when a semidefinite system

m∑
i=1

xiAi � B (PSD)

is badly behaved via certain excluded matrices. We assume (with no loss of generality) that a
maximum rank positive semidefinite matrix of the form B −

∑
i xiAi is

Z =

(
Ir 0

0 0

)
for some 0 ≤ r ≤ n. (1.1)
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We prove (in Theorem 2) that (PSD) is badly behaved iff there is a matrix V which is a linear
combination of the Ai and B of the form

V =

(
V11 V12

V T
12 V22

)
, (1.2)

where V11 is r× r, V22 is positive semidefinite, and R(V T
12) 6⊆ R(V22). Here R() stands for

rangespace.

The excluded matrices Z and V are easy to spot in all published badly behaved semidefinite
systems (we counted about 20 in the above references). The simplest such system is

x1

(
α 1

1 0

)
�

(
1 0

0 0

)
, (1.3)

where α is any real number: in (1.3) the right hand side serves as Z and the matrix on the left
hand side serves as V.

Theorem 3 similarly characterizes well behaved semidefinite systems.

Theorems 2 and 3 follow from Theorem 1, and Lemma 3, which characterizes the set of feasible
directions and related sets in the semidefinite cone.

(3) How do we verify that (PSD) is badly or well behaved? In other words, how do we convince a
nonexpert reader that an instance of (PSD) is badly or well behaved? Theorems 4 and 5 in Section
4 show how to transform (PSD) into an equivalent standard system, whose bad or good behavior
is self-evident. The transformation is surprisingly simple, as it relies mostly on elementary row
operations — the same operations that are used in Gaussian elimination. A natural analogy
(and our inspiration) is how one transforms an infeasible linear system of equations Ax = b to
derive the obviously infeasible equation 〈0, x〉 = 1.

Here we also prove that i) badly/well behaved semidefinite systems are in NP∩co-NP in the real
number model of computing ii) for a well behaved semidefinite system we can restrict optimal
dual matrices to be block-diagonal, and iii) roughly speaking, we can partition a well behaved
system into a strictly feasible part, and a linear part.

As a byproduct, we prove that all linear maps that act on symmetric matrices can be brought
into a canonical form; this canonical form allows us to easily check whether the image of the
semidefinite cone under the given linear map is closed.

(4) In Section 5 we sketch analogous results for conic linear programs and SDPs in the dual form
and prove that all badly behaved semidefinite systems can be reduced, by a sequence of natural
operations, to the system (1.3).

(5) Since most examples in the main body of the paper have at most three variables and 3×3 matrices,
in Appendix A we give a larger illustrative example with four variables and 4×4 matrices. We
prove other technical results in Appendix B.

We illustrate our results by many examples. The only technical proofs in the main body of the
paper are those of Theorem 1 and of Lemma 5, and these can be safely skipped at first reading.

Related work A fundamental question in convex analysis is whether the linear image of a closed
convex cone is closed. In this paper we rely on Theorem 1.1 from [29], which we summmarize in
Lemma 1. This result gives several necessary conditions, and exact characterizations for the class of
nice cones. We refer to Bauschke and Borwein [4] for the closedness of the continuous image of a closed
convex cone; to Auslender [2] for the closedness of the linear image of an arbitrary closed convex set;
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and to Waksman and Epelman [47] for another related result. For perturbation results we refer to
Borwein and Moors [13, 14]; the latter paper shows that the set of linear maps under which the image
of a closed convex cone is not closed is small both in terms of measure and category. For a more
general problem, whether the intersection of an infinite sequence of nested sets is nonempty, Bertsekas
and Tseng [7] gave a sufficient condition. Their characterization is in terms of a certain retractiveness
property of the set sequence.

We say that (Dc) is a strong dual of (Pc) if they have the same value, and (Dc) attains this value,
when it is finite. Thus in general (Dc) is not a strong dual of (Pc). Using this terminology, (P ) is well
behaved exactly if (Dc) is a strong dual of (Pc) for all c. We say that (P ) satisfies Slater’s condition,
if there is x such that b − Ax is in the relative interior of K; if this condition holds, then (P ) is well
behaved.

Ramana in [34] proposed a strong dual for SDPs, which uses polynomially many extra variables
and constraints. His result implies that semidefinite feasibility is in NP ∩ co-NP in the real number
model of computing. Klep and Schweighofer in [24] constructed a Ramana-type strong dual for SDPs,
which, interestingly, is based on ideas from algebraic geometry, rather than from convex analysis.

The facial reduction algorithm of Borwein and Wolkowicz in [16, 15] converts (P ) into a system
that satisfies Slater’s condition, and is hence well behaved. The algorithm relies on a sequence of
reduction steps. For more recent, simplified facial reduction algorithms, see Waki and Muramatsu
[46] and Pataki [31]. Ramana, Tunçel, and Wolkowicz in [36] proved the correctness of Ramana’s dual
from the facial reduction algorithm of [16, 15], showing the connection of these two seemingly unrelated
concepts. We refer to Ramana and Freund [35] for a proof that the Lagrange dual of Ramana’s dual
has the same value as the original problem. Generalizations of Ramana’s dual are known for conic LPs
over nice cones [31]; and for conic LPs over homogeneous cones (Pólik and Terlaky [33]).

For a generalization of the concept of strict complementarity (a concept that plays an important
role in our work), we refer to Pena and Roshchina [32]. Schurr et al in [40] characterize universal duality
— when strong duality holds for all right hand sides and objective functions. Tunçel and Wolkowicz in
[43] related the lack of strict complementarity in a homogeneous conic linear system to the existence
of an objective function with a positive gap.

We finally remark that the technique of reformulating equality constrained SDPs (relying mostly
on elementary row operations), to easily verify their infeasibility was used recently by Liu and Pataki
[25].

1.1 Preliminaries. When is the linear image of a closed convex cone closed?

We now review some basics in convex analysis, relying mainly on references [38, 23, 12, 5]. In Lemma
1 we also give a short and transparent summary of a result on the closedness of the linear image of a
closed convex cone from [29].

If x and y are elements of the same Euclidean space, we sometimes write x∗y for 〈x, y〉. For a set
C we denote its linear span, the orthogonal complement of its linear span, its closure, and interior by
linC, C⊥, clC, and intC, respectively. For a convex set C we denote its relative interior by riC. For
a convex set C and x ∈ C we define

dir(x,C) = { y |x+ εy ∈ C for some ε > 0 }, (1.4)

ldir(x,C) = dir(x,C) ∩ − dir(x,C), (1.5)

tan(x,C) = cl dir(x,C) ∩ − cl dir(x,C). (1.6)

Here dir(x,C) is the set of feasible directions at x in C, and tan(x,C) is the tangent space at x in C.
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A set C is a cone if λx ∈ C holds for all x ∈ C, and λ ≥ 0. Let C be a closed convex cone. Its
dual cone is

C∗ = { y | 〈y, x〉 ≥ 0 ∀x ∈ C}.

For E, a convex subset of C, we say that E is a face of C, if x1, x2 ∈ C, and 1/2(x1 +x2) ∈ E implies
that x1 and x2 are in E.

For x ∈ C and u ∈ C∗, we say that u is strictly complementary to x if u ∈ ri(C∗ ∩ x⊥). If C is
the semidefinite cone, or the second order cone, then u is strictly complementary to x iff x is strictly
complementary to u; in other cones, however, this may not be the case (see a discussion in [28]).

We say that a closed convex cone C is nice, if

C∗ + E⊥ is closed for all E faces of C.

We know that polyhedral, semidefinite, and p-order cones are nice [16, 15, 29]; the intersection of a
nice cone with a linear subspace and the linear preimage of a nice cone are nice [18]; hence homogeneous
cones are nice, as they are the intersection of a semidefinite cone with a linear subspace (see [17, 22]).
In [30] we characterized nice cones, proved that they must be facially exposed and conjectured that
all facially exposed cones are nice. However, Roshchina [39] disproved this conjecture.

We denote the rangespace, nullspace, and adjoint operator of a linear operatorM byR(M), N (M)
and M∗, respectively. We denote by Sn the set of n by n symmetric matrices, and by Sn+ the set
of n × n symmetric positive semidefinite (psd) matrices. For symmetric matrices A and B we write
A � B [A ≺ B] to denote that B −A is positive semidefinite [positive definite], and we write A •B to
denote the trace of AB. We have (Sn+)∗ = Sn+ with respect to the • inner product.

We will use the fact that for an H ⊆ Sn affine subspace

ri(H ∩ Sn+) = {X ∈ Sn+ |X is a maximum rank psd matrix inH}.

For A,B ∈ Sn and an invertible matrix T we will use the identity

TTAT • T−1BT−T = A •B. (1.7)

For matrices A1 and A2, we let

A1 ⊕A2 =

(
A1 0

0 A2

)
,

and for sets of matrices X1 and X2 we define

X1 ⊕X2 = {A1 ⊕A2 |A1 ∈ X1, A2 ∈ X2 }.

For instance, Sr+⊕{0} (where the order of the 0 matrix will be clear from context) is the set of matrices
with the upper left r × r block positive semidefinite and the rest of the components zero.

We write Ir for the identity matrix of order r.

The following question is fundamental in convex analysis: when is the linear image of a closed
convex cone closed? We state and illustrate a short version of Theorem 1.1 from [29], which gives
easily checkable conditions which are “almost” necessary and sufficient. We will use Lemma 1 later on
to prove Theorem 1.

Lemma 1. Let M be a linear map, C a closed convex cone, and w ∈ ri(C ∩ R(M)). Conditions (1)
and (2) below are equivalent to each other, and necessary for M∗C∗ to be closed. If C is nice, then
they are necessary and sufficient.
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(1) R(M) ∩
(
cl dir(w,C) \ dir(w,C)

)
= ∅.

(2) There is w′ ∈ N (M∗) ∩ C∗ strictly complementary to w, and

R(M) ∩
(
tan(w,C) \ ldir(w,C)

)
= ∅.

Our first example which illustrates Lemma 1 is very simple:

Example 1. Let C = C∗ = S2+ and define the map M : R2 → S2 as

M(x1, x2) =

(
x1 x2

x2 0

)
.

Then M∗Y = (y11, 2y12)T whereY ∈ S2, and M∗C∗ is not closed: a direct computation shows
M∗C∗ = (R++ × R) ∪ (0, 0), where R++ stands for the set of strictly positive reals.

Lemma 1 also proves that M∗C∗ is not closed: to see how, let

w =

(
1 0

0 0

)
, v =

(
0 1

1 0

)
.

Then w ∈ ri(R(M) ∩ C), since it is a maximum rank psd matrix in R(M). Also, v ∈ R(M) ∩
(cl dir(w,C) \ dir(w,C)), since v 6∈ dir(w,C) follows from the definition, and v ∈ cl dir(w,C) follows,
since putting any ε > 0 into the (2, 2) position of v makes it a feasible direction. So condition (1) of
Lemma 1 is violated, hence M∗C∗ is not closed.

The next, more involved example illustrates the key point of Lemma 1: the image setM∗C∗ usually
has much more complicated geometry than C and C∗. Lemma 1 sheds light on the geometry ofM∗C∗
via the geometry of the simpler set C.

Example 2. Let C = C∗ = S3+ and define the map M : R3 → S3 as

M(x1, x2, x3) =

 x1 2x2 x3

2x2 x2 + x3 0

x3 0 0

 .

Thus M∗Y = (y11, y22 + 4y12, y22 + 2y13), where Y ∈ S3.

It is a straightforward computation (which we omit) to show

cl(M∗C∗) = {(α, β, γ) : α ≥ 0, 4α+ β ≥ 0},
cl(M∗C∗) \M∗C∗ = {(0, β, γ) : γ 6= β ≥ 0}.

(1.8)

The set M∗C∗ is shown on Figure 1 in blue, and cl (M∗C∗) \M∗C∗ in green. (Note that the blue
diagonal segment on the green facet actually belongs to M∗C∗.)

Lemma 1 easily proves thatM∗C∗ is not closed, even without computing the sets in (1.8); indeed,
let

w := M(6, 1, 0) =

6 2 0

2 1 0

0 0 0

 , v :=M(0, 0, 1) =

0 0 1

0 1 0

1 0 0

 ,
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and observe i) w ∈ ri(R(M) ∩ C), since it is a maximum rank psd matrix in R(M); ii) v 6∈ dir(w,C)
follows from the definition; and iii) v ∈ cl dir(w,C), since putting any ε > 0 into the (3, 3) position of
v makes it a feasible direction.

Thus condition (1) in Lemma 1 is violated, so M∗C∗ is not closed.

Figure 1: The set M∗C∗ is in blue, and cl (M∗C∗) \M∗C∗ is in green

We mention in passing that the second part of condition (2) in Lemma 1 is stated in Theorem
1.1 in [29] as R(M) ∩ ((E4)⊥ \ linE) = ∅, where E is the smallest face of C that contains w and
E4 = C∗ ∩w⊥. However, this is an equivalent formulation, as implied by the characterization of linE
and (E4)⊥, see e.g., Lemma 7 in Appendix B.

Throughout the paper we assume that (P ) is feasible. Recall that we say that (P ) satisfies Slater’s
condition if there exists x such that b−Ax ∈ riK.

2 When is a conic linear system badly or well behaved?

In this section we present our main characterization of when (P ) is badly or well behaved (these
concepts are defined in the Introduction). We first need a definition.

Definition 1. A slack in (P ) is a vector in

(R(A) + b) ∩K,

and a maximum slack is a vector in the relative interior of all slacks.

We start with a basic lemma:

Lemma 2. The system (P ) is well behaved, if and only if the set(
A∗ 0

b∗ 1

)(
K∗

R+

)

is closed.
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To put Lemma 2 into perspective, note that the image set in Lemma 2 is closed if (A, b)∗K∗ is
closed (one can argue this directly or by modifying the proof of Lemma 2). In turn, if (A, b)∗K∗ is
closed, then the duality gap between (Pc) and (Dc) is zero, even if K lives in an infinite dimensional
space — see, e.g., Theorem 7.2 in [3] (where our primal is called the dual). The proof of Lemma 2 is
standard, and we give it in Appendix B.

The main result of this section follows (recall the definition of dir(z,K) and related sets from
(1.4)–(1.6)). We write R(A, b) for the rangespace of the operator (x, t)→ Ax+ bt.

Theorem 1. Let z be a maximum slack in (P ). Conditions (1) and (2) below are equivalent to each
other, and necessary for (P ) to be well behaved. If K is nice, then they are necessary and sufficient.

(1) R(A, b) ∩ (cl dir(z,K) \ dir(z,K)) = ∅.

(2) There is u ∈ N
(
(A, b)∗

)
∩K∗ strictly complementary to z, and

R(A, b) ∩
(
tan(z,K) \ ldir(z,K)

)
= ∅.

To build intuition we show how Theorem 1 unifies two classical, seemingly unrelated, sufficient
conditions for (P ) to be well-behaved.

Corollary 1. Suppose that K is a nice cone. If K is polyhedral or (P ) satisfies Slater’s condition,
then (P ) is well-behaved.

Proof Let z be a maximum slack in (P ). If K is polyhedral, then so is dir(z,K). If (P ) satisfies
Slater’s condition, then clearly z ∈ riK, so dir(z,K) = linK. In both cases dir(z,K) is closed, hence
Condition (1) holds, so (P ) is well behaved.

Though Lemma 2 is a bit simpler to state than Theorem 1, the latter will be more useful. On the
one hand, Lemma 2 relies on the closedness of the linear image of K∗ × R+, which may not be easy
to check. On the other hand, Theorem 1 relies on the geometry of the cone K itself, and not on the
geometry of its linear image. The geometry of typical cones that occur in optimization — e.g. the
geometry of the semidefinite cone — is well understood. Thus Theorem 1, among other things, will
lead to a proof that badly behaved semidefinite systems are in NP ∩ co-NP in the real number model
of computing. Lemma 2, by itself, affords no such corollary.

Note that if b = 0, then by Lemma 2 the system (P ) is well behaved iff A∗K∗ is closed. Thus in
this case Lemma 1 and Theorem 1 are equivalent. To prove the general case of Theorem 1 we use a
homogenization argument.

Proof of Theorem 1: We consider the homogenized system

Ax− bx0 ≤K 0

−x0 ≤ 0,
(Ph)

and first prove the following claim:

Claim There is a z maximum slack in (P ) such that (z, 1) is also a maximum slack in (Ph).
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To prove the Claim we first note that if z is a maximum slack in (P ) and z′ is some other slack,
then λz + (1 − λ)z′ is also a maximum slack for all 0 < λ ≤ 1 (by Theorem 6.1 in [38]). A similar
result holds for (Ph).

Now let z1 be a maximum slack in (P ), then (z1, 1) is a slack in (Ph). Next, let (z2, x0) be a
maximum slack in (Ph). By the properties of the relative interior, and since (z1, 1) is a slack in (Ph),
we have that (z2, x0) − ε(z1, 1) is a slack in (Ph) for some ε > 0. So x0 > 0 must hold, and (after
normalizing) we can assume x0 = 1. Hence z2 is a slack in (P ) and

z :=
1

2
(z1 + z2)

will do. This completes the proof of the claim.

To proceed with the proof of the theorem, we note that the set of maximum slacks in (P ) is a
relatively open set, so by Theorem 18.2 in [38] it is contained in riF, where F is some face of K.
Therefore dir(z,K) = K + linF for any maximum slack z (see e.g. Lemma 2.7 in [28]) so the sets
dir(z,K) and tan(z,K) depend only on F. Hence we are free to use any maximum slack of (P ) in our
proof, and we will use the particular maximum slack provided in the preceding Claim.

For convenience we define the linear map

Ah =

(
A b

0 1

)
which corresponds to the homogenized conic linear system (Ph).

We first note that (trivially)

dir
(
(z, 1),K × R+

)
= dir(z,K)× R holds.

Equations (1.4)–(1.6) imply that the same statement holds, if we replace the operator ′′ dir′′ by ′′ cl dir′′,
“ tan′′, or ′′ ldir′′ .

Hence the following equations hold:

cl dir
(
(z, 1),K × R+

)
\ dir

(
(z, 1),K × R+

)
=

(
cl dir(z,K) \ dir(z,K)

)
× R, (2.9)

tan
(
(z, 1),K × R+

)
\ ldir

(
(z, 1),K × R+

)
=

(
tan(z,K) \ ldir(z,K)

)
× R. (2.10)

Consider now the following variants of conditions (1) and (2):

(1′) R(Ah) ∩
[
cl dir

(
(z, 1),K × R+

)
\ dir

(
(z, 1),K × R+

)]
= ∅.

(2′) There is (u, u0) ∈ N (A∗h) ∩ (K × R+)∗ strictly complementary to (z, 1) and

R(Ah) ∩
[
tan
(
(z, 1),K × R+

)
\ ldir

(
(z, 1),K × R+

)]
= ∅.

Since (z, 1) is a maximum slack in (Ph), we have (z, 1) ∈ ri
(
R(Ah) ∩ (K × R+)

)
. Hence by Lemma 1

with C = K × R+,M = Ah, w = (z, 1) we find

A∗h(K × R+)∗ is closed ⇒ (1′)⇔ (2′)

and that equivalence holds when K × R+ is nice.

We next note that by (2.9) condition (1′) is equivalent to (1). Also, if (u, u0) is as specified in (2′),
then

〈(u, u0), (z, 1)〉 = 〈u, z〉+ u0 = 0,

9



and since both terms above are nonnegative, we must have u0 = 0. Thus using (2.10) we find that
statement (2′) is equivalent to condition (2) in Theorem 1. Thus we have

A∗h(K × R+)∗ is closed ⇒ (1)⇔ (2)

with equivalence holding when K×R+ is nice. Finally, K is nice if and only if K×R+ is, thus invoking
Lemma 2 completes the proof.

We can easily modify the proof of Theorem 1 to show that conditions 1 and 2 suffice for (P ) to
be well behaved, even under a weaker condition than K being nice: it is enough for K∗ + F⊥ to be
closed, where F is the smallest face of K that contains z. This more general version of Theorem 1
implies that Corollary 1 holds even if we do not assume that K is nice – we refer the interested reader
to version 3 of the paper on arxiv.org.

3 When is a semidefinite system badly or well behaved?

We now specialize the results of Section 2, and characterize when the semidefinite system (PSD) is
badly or well behaved. To this end, we consider the primal-dual pair of SDPs

sup
∑m

i=1 cixi inf B • Y
(SDPc) s.t.

∑m
i=1 xiAi � B s.t. Y � 0 (SDDc)

Ai • Y = ci (i = 1, . . . ,m),

where A1, . . . , Am, B ∈ Sn, and c1, . . . , cm are scalars.

Specializing Definition 1 to the semidefinite system (PSD), we find that i) a slack in (PSD) is a
matrix of the form S = B−

∑
i xiAi � 0, and ii) a maximum slack in (PSD) is a maximum rank slack.

We also note that the cone of positive semidefinite matrices is nice [16, 15, 29].

We make the following

Assumption 1. The maximum rank slack in (PSD) is

Z =

(
Ir 0

0 0

)
for some 0 ≤ r ≤ n. (3.11)

We can easily satisfy Assumption 1, at least from a theoretical point of view, as follows. If Z is
any maximum rank slack in (PSD), Q is a matrix of suitably scaled eigenvectors of Z, and we apply
the rotation QT ()Q to all Ai and B, then the maximum rank slack in the rotated system is in the
required form. (We do not make a claim about actually computing Z or Q; we discuss this point more
at the end of Section 4 ).

In the interest of the reader we first state and illustrate the main results, then prove them.

Theorem 2. The system (PSD) is badly behaved if and only if there is a matrix V which is a linear
combination of the Ai and B of the form

V =

(
V11 V12

V T
12 V22

)
, (3.12)

where V11 is r × r, V22 � 0, and R(V T
12) 6⊆ R(V22).
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The Z and V matrices provide a certificate of the bad behavior of (PSD).

Example 3. In the problem

sup x1

s.t. x1

(
0 1

1 0

)
�

(
1 0

0 0

)
(3.13)

the only feasible solution is x1 = 0. The dual program, in which we denote the components of Y by
yij , is equivalent to

inf y11

s.t.

(
y11 1/2

1/2 y22

)
� 0,

which has a 0 infimum but does not attain it.

The certificates of the bad behavior of the system in (3.13) are

Z =

(
1 0

0 0

)
, V =

(
0 1

1 0

)
.

Example 4. The problem

sup x2

s.t. x1

1 0 0

0 0 0

0 0 0

+ x2

0 0 1

0 1 0

1 0 0

 �
1 0 0

0 1 0

0 0 0

 (3.14)

again has an attained 0 supremum. The reader can easily check that the value of the dual program is
1 (and it is attained), so there is a finite, positive duality gap.

In (3.14) the right hand side is the maximum slack, and we can choose the coefficient matrix of x2
as the V matrix of Theorem 2.

We next characterize well behaved semidefinite systems:

Theorem 3. The system (PSD) is well behaved if and only if conditions (1) and (2) below hold:

(1) There is a matrix U of the form

U =

(
0 0

0 U22

)
, (3.15)

with U22 ∈ Sn−r, U22 � 0 and

A1 • U = . . . = Am • U = B • U = 0. (3.16)

(2) For all V matrices, which are a linear combination of the Ai and B and are of the form

V =

(
V11 V12

V T
12 0

)
,

with V11 ∈ Sr, we must have V12 = 0.

11



Example 5. The system

x1

0 0 0

0 0 1

0 1 0

 �
1 0 0

0 0 0

0 0 0

 (3.17)

is well behaved; we can easily prove this either directly or via Theorem 3. To do the latter, note
that the right hand side of (3.17) is the maximum rank slack, condition (1) of Theorem 3 holds with
U = 0 ⊕ I2, and condition (2) holds vacuously (the (1, 2), (1, 3) block of both constraint matrices is
zero).

Example 6. This example illustrates both badly and well behaved semidefinite systems, depending
on the value of the parameter α :

x1

0 0 1

0 1 −3

1 −3 8

 + x2

 0 1 −3

1 0 1

−3 1 −6

 + x3

 1 1 α− 3

1 1 −2

α− 3 −2 2

 �

 2 2 α− 5

2 2 −4

α− 5 −4 4

 (3.18)

Let us write Ai for the constraint matrices on the left, and B for the right hand side matrix in (3.18).
We first observe that Z = I1 ⊕ 0 is the maximum rank slack; indeed i) Z = B −A1 −A2 −A3, so it is
a slack, and ii) the matrix

U =

0 0 0

0 10 3

0 3 1

 (3.19)

satisfies B • U = Ai • U = 0 for all i. Hence U is orthogonal to any slack matrix, so the rank of any
slack matrix is at most 1.

If α 6= 1, then (3.18) is badly behaved; as proof, observe that

V := A3 −A2 −A1 =

 1 0 α− 1

0 0 0

α− 1 0 0


is a certificate matrix as required by Theorem 2.

If α = 1, then (3.18) is well behaved, and we can verify this using Theorem 3 as follows. The U
matrix in (3.19) satisfies condition (1) of Theorem 3. As to condition (2), if the lower right 2× 2 block

of V :=
∑3

i=1 λiAi + µB is zero, then (λ1, λ2, λ3, µ) must be a linear combination of

(0, 0, 2,−1) and (5, 5,−1,−2),

so for all such (λ1, λ2, λ3, µ) the upper left 1× 2 block of V is also zero.

We return to Examples 3–6 in Section 4. As we will see there, the bad or good behavior of
semidefinite systems can be verified using only an elementary linear algebraic argument, without ever
referring to Theorems 2 or 3. We will use Examples 3–6 as illustrations.

The reader may find it interesting to spot the Z and V excluded matrices in other pathological
SDPs in the literature, e.g., in the instances in [6, 11, 3, 44, 41, 34, 43, 27].

Theorems 2 and 3 simply follow from Theorem 1 and from Lemma 3 below, which describes the
set of feasible directions and related sets in the semidefinite cone:

12



Lemma 3. Let Z be as in Assumption 1, and recall the definition of the set of feasible directions, and
related sets from (1.4)-(1.6). Then

ldir(Z,Sn+) = Sr ⊕ {0}, (3.20)

cl dir(Z,Sn+) =

{(
Y11 Y12

Y T
12 Y22

)∣∣Y22 ∈ Sn−r+

}
, (3.21)

tan(Z,Sn+) =

{(
Y11 Y12

Y T
12 0

)∣∣Y11 ∈ Sr} , (3.22)

dir(Z,Sn+) =

{(
Y11 Y12

Y T
12 Y22

)∣∣Y22 ∈ Sn−r+ ,R(Y T
12) ⊆ R(Y22)

}
. (3.23)

The proof of Lemma 3 is given in Appendix B.

Proof of Theorem 2 By condition (1) of Theorem 1 we see that (PSD) is badly behaved, iff there
is a matrix V ∈ lin{A1, . . . , Am, B} such that

V ∈ cl dir(Z,Sn+) \ dir(Z,Sn+).

Thus our result follows from parts (3.21) and (3.23) in Lemma 3.

Proof of Theorem 3 We apply Theorem 1 to the system (PSD). We first observe that a matrix
U � 0 is strictly complementary to Z if and only if

U =

(
0 0

0 U22

)
, with U22 ∈ Sn−r, U22 � 0.

Next we note that the first part of condition (2) in Theorem 1 holds iff there is such a U that satisfies
(3.16). By (3.20) and (3.22) in Lemma 3 the second part of condition (2) in Theorem 1 holds iff all
V ∈ lin{A1, . . . , Am, B} which are of the form

V =

(
V11 V12

V T
12 0

)
satisfy V12 = 0. This completes the proof.

To summarize, Theorems 2 and 3 are a ”combinatorial version” of Theorem 1.

We note that for semidefinite systems that are strictly feasible, a matrix similar to the V matrix
in Theorem 2 can make sure that the optimal primal-dual solution pair fails strict complementarity;
see [48].

Although we focus on feasible systems, we obtain natural corollaries about weakly infeasible SDPs,
a class of pathological infeasible SDPs. To describe the connection, note that the alternative system

Y � 0, Ai • Y = 0 (i = 1, . . . ,m), B • Y = −1 (3.24)

gives a natural proof of infeasibility of (PSD): if (3.24) is feasible, then (PSD) is trivially infeasible.
However, (PSD) and (3.24) may both be infeasible, in which case we call the semidefinite system (PSD)
weakly infeasible.
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As background on weakly infeasible SDPs, we mention that Waki [45] recently described a method
for generating weakly infeasible SDPs based on Lasserre’s relaxation for polynomial optimization prob-
lems; Klep and Schweighofer [24] analyzed weakly infeasible SDPs using real algebraic geometry tech-
niques; and Lourenco et al [26] proved that any weakly infeasible SDP with order n matrices has a
weakly infeasible subsystem with dimension at most n− 1.

To apply our machinery to weakly infeasible SDPs, we homogenize (PSD) to obtain the system

m∑
i=1

xiAi − x0B � 0. (3.25)

Assume that the system (3.25) satisfies Assumption 1. First, suppose that (PSD) is weakly infeasible.
Then (3.25) is badly behaved, since

sup{x0 | (x, x0) is feasible in (3.25)} = 0, (3.26)

but there is no solution feasible in the dual of (3.26) (such a dual solution would be feasible in (3.24)).
Hence by Theorem 2 the excluded matrices Z and V appear in (3.25). In turn, if (3.25) satisfies the
conditions of Theorem 3 and hence it is well behaved, then (PSD) cannot be weakly infeasible.

4 Reformulations. Badly behaved semidefinite systems are in
NP ∩ co-NP

4.1 Reformulations

To motivate the discussion of this section, we recall a basic result from the theory of linear equations:

“The system Ax = b is infeasible if and only if its row echelon form contains the equation
〈0, x〉 = α, where α 6= 0.”

Since the ”if” direction is trivial, we will — informally — say that the row echelon form is an easy-to-
verify certificate, or witness, of infeasibility.

In this section we describe analogous results for a very different problem : we show how to transform
(PSD) into an equivalent system whose bad or good behavior is trivial to verify. As a corollary we
prove that badly (and well) behaved semidefinite systems are in NP∩co-NP in the real number model
of computing. (In this model we can store arbitrary real numbers in unit space and perform arithmetic
operations in unit time; see e.g. [9]. We do not claim that badly behaved semidefinite systems are in
P, i.e., we do not provide a polynomial time algorithm to decide whether (PSD) is badly behaved. We
discuss this point in more detail at the end of this section.)

We first define the type of transformation that we use on (PSD).

Definition 2. We obtain an elementary reformulation, or simply a reformulation, of (SDPc) by a
sequence of the following operations:

(1) Apply a rotation TT ()T to all Ai and B, where T = Ir ⊕M and M is invertible.

(2) Replace B by B +
∑m

j=1 µjAj , where µ ∈ Rm.

(3) Exchange (Ai, ci) and (Aj , cj), where i 6= j.
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(4) Replace (Ai, ci) by (
∑m

j=1 λjAj ,
∑m

j=1 λjcj), where λ ∈ Rm, λi 6= 0.

We obtain an elementary reformulation of the system (PSD) by applying the preceding operations with
some c.

Clearly, in all reformulations of (PSD) the maximum rank slack is the same.

Where do these operations come from? Operations (3) and (4) are equivalent to elementary row
operations (inherited from Gaussian elimination) done on (SDDc) :

• Operation (3) exchanges the dual equations Ai • Y = ci andAj • Y = cj ; and

• Operation (4) replaces the dual equation Ai • Y = ci by
∑m

j=1(λjAj) • Y =
∑m

j=1 λjcj .

Lemma 4. The system (PSD) is well behaved if and only if its elementary reformulations are.

Proof Operations (1)-(4) of Definition 2 keep the value of (SDPc) finite, if it is finite; and infinite,
if it is infinite. Suppose now that Y is feasible in (SDDc) with value, say, α, and we apply operations
(1) and (2) with rotation matrix T and vector µ. Then identity (1.7) implies that T−TY T is feasible
in the dual of the reformulated problem with value α +

∑m
j=1 µjcj . Operations (3) and (4) preserve

the feasibility and objective value of a solution of (SDDc). Thus if (PSD) is well behaved, so are its
reformulations, and this completes the proof of the ”Only if” direction. Since (PSD) is a reformulation
of its reformulations, the ”If” direction follows as well.

4.2 Reformulating (PSD) to verify maximality of the maximum rank slack

Recall that Z is the maximum rank slack in (PSD) described in Assumption 1. We reformulate (PSD)
in two steps. In the first step, given in Lemma 5, we reformulate (PSD) so the resulting system has
easy-to-verify witnesses that Z is a maximum rank slack. (The Yj matrices in Lemma 5 will be the
witnesses.)

In Lemma 5 we rely on a facial reduction algorithm (see [16, 15, 46, 31]). It is important that in
Lemma 5 we only use rotations, i.e., type (1) operations of Definition 2.

Lemma 5. The system (PSD) has a reformulation

m∑
i=1

xiA
′
i � B′ (P ′SD)

and there exist symmetric matrices of the form

Yj =


rj︷︸︸︷ rj−1+···+r1︷︸︸︷

0 0 ×
0 I ×
× × ×

 (j = 1, . . . , `) (4.27)

where ` ≥ 0, r1 > 0, . . . , r` > 0, r1 + · · ·+ r` = n− r, and

Yj •B′ = Yj •A′i = 0 (4.28)

holds for all i and j. Here the × symbols denote blocks with arbitrary elements in the Yj matrices.
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If Z = I, i.e., (PSD) satisfies Slater’s condition, then we just take B′ = B, A′i = Ai for all i and
` = 0 in Lemma 5.

To build intuition, we first establish why the Yj matrices indeed prove that the rank of any slack
matrix is at most r. Let S be a slack in (PSD), and Y1, . . . , Y` as in the statement of Lemma 5. Then
S = B′ −

∑
i xiA

′
i for some x ∈ Rm. So Y1 • S = 0 and S � 0, hence the last r1 rows and columns of

S are zero; Y2 • S = 0 and S � 0 imply that the next r2 rows and columns of S are zero, and so on.
Inductively we find that the last r1 + · · ·+ r` = n− r rows and columns of S are zero, hence S must
have rank at most r.

Thus we can prove that Z is a maximum rank slack in (P ′SD) (hence also in (PSD)) using

(1) a vector x ∈ Rm such that Z = B′ −
∑m

i=1 xiA
′
i, and

(2) the Yj matrices of Lemma 5.

We next illustrate Lemma 5.

Example 7. (Examples 3, 4, 5 and 6 continued) In all these examples it is easy to show why the
maximum rank slack is indeed a slack. Also, in Example 3

Y1 =

(
0 0

0 1

)

is orthogonal to all constraint matrices (using the • inner product), so it proves that the rank of any
slack matrix is at most one.

In Example 4 the matrix Y1 = 0 ⊕ I1 proves that the rank of any slack is at most one, and in
Example 5 the matrix Y1 = 0⊕ I2 proves that the rank of any slack is at most two. (So the first three
examples do not even need to be reformulated to have a convenient proof that Z is a maximum rank
slack.)

In Example 6 we let

T =

1 0 0

0 1 3

0 0 1

 ,

and apply the rotation TT ()T to all matrices to obtain the system

x1

0 0 1

0 1 0

1 0 −1

+ x2

0 1 0

1 0 1

0 1 0

+ x3

1 1 α

1 1 1

α 1 −1

 �
 2 2 α+ 1

2 2 2

α+ 1 2 −2

 . (4.29)

Now Y1 = 0 ⊕ I2 is orthogonal to all constraint matrices in (4.29), and this proves that the rank of
any slack is at most one, so Z = I1 ⊕ 0 is a maximum rank slack.

In Appendix A we give a larger example, in which we need two Yj matrices to prove that any slack
matrix has rank at most 2.

Proof of Lemma 5
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To find the reformulation assume that k ≥ 0, we have a reformulation of the form (P ′SD) and
matrices Y1, . . . , Yk such that (4.28) holds for all i and for j = 1, . . . , k. At the start k = 0 and
B′ = B, A′i = Ai for all i. For brevity, let sk = r1 + · · ·+ rk. We claim that

sk ≤ n− r holds.

This indeed follows since if S � 0 is a slack in (P ′SD) then (using the same argument that we used
before) the last sk rows and columns of S must be zero.

If sk = n− r, we set ` = k, and stop; otherwise, we define the cone K = Sn+ ∩Y ⊥1 · · · ∩Y ⊥k . Clearly,
K and its dual cone K∗ are of the form

K =

{(
Y11 0

0 0

)∣∣Y11 ∈ Sn−sk+

}
, K∗ =

{(
Y11 Y12

Y T
12 Y22

)∣∣Y11 ∈ Sn−sk+

}
.

Next, define the affine subspace

H = lin {A′1, . . . , A′m }+B′.

Since Z is also a maximum rank slack in (P ′SD), and r < n− sk, we have H ∩K 6= ∅, H ∩ riK = ∅,
hence H⊥ ∩ (K∗ \K⊥) 6= ∅ by a classic theorem of the alternative (see e.g. Lemma 1 in [31]).

Let
Yk+1 ∈ H⊥ ∩ (K∗ \K⊥).

Since Yk+1 • Z = 0, we have

Yk+1 =


r︷︸︸︷ sk︷︸︸︷
0 0 ×
0 Y ′ ×
× × ×


for some Y ′ � 0. (Again, the × symbols stand for submatrices with arbitrary elements). Let rk+1 be
the number of positive eigenvalues of Y ′; since Yk+1 6∈ K⊥, we have rk+1 > 0.

Let Q be an invertible matrix such that QTY ′Q = 0⊕ Irk+1
, and T = Ir ⊕Q⊕ Isk . We apply the

rotation TT ()T to Y1, . . . , Yk+1, and the rotation T−1()T−T to all A′i and to B′.

By (1.7) the equation (4.28) holds for all i and for j = 1, . . . , k+1. By the form of T now Y1, . . . , Yk+1

are in the required shape (see equation (4.27)). We then set k = k + 1 and continue.

Clearly, our algorithm terminates in finitely many steps, so the proof is complete.

4.3 Reformulating (PSD) to verify that it is badly behaved

In Theorem 4 we give the final reformulation of (PSD) to prove its bad behavior. We point out that
in Theorem 4 the proof of the ”if” direction is elementary, thus the reformulated system (PSD,bad) is
an easy-to-verify certificate that (PSD) is badly behaved.

Theorem 4. The system (PSD) is badly behaved if and only if it has a reformulation

k∑
i=1

xi

(
Fi 0

0 0

)
+

m∑
i=k+1

xi

(
Fi Gi

GT
i Hi

)
�

(
Ir 0

0 0

)
= Z, (PSD,bad)

where
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(1) matrix Z is the maximum rank slack, and its maximality can be verified by matrices Y1, . . . , Y`,
as given by Lemma 5.

(2) The matrices (
Gi

Hi

)
(i = k + 1, . . . ,m)

are linearly independent.

(3) Hm � 0.

Proof (If) By Lemma 4 it is enough to prove that (PSD,bad) is badly behaved. Let x be feasible in
(PSD,bad) with a corresponding slack S. Note that the last n− r rows and columns of S must be zero,
otherwise 1

2 (S + Z) would be a slack with larger rank than Z. Hence, by condition (2) we must have
xk+1 = . . . = xm = 0. Next, let us consider the SDP

sup {−xm |x is feasible in (PSD,bad) }, (4.30)

which, by the above argument, has optimal value 0. We prove that its dual cannot have a feasible
solution with value 0, so suppose that

Y =

(
Y11 Y12

Y T
12 Y22

)
� 0

is such a solution. By Y • Z = 0 we get Y11 = 0, hence by psdness of Y we deduce Y12 = 0. Thus(
Fm Gm

GT
m Hm

)
• Y = Hm • Y22 ≥ 0,

which contradicts the assumption that Y is feasible in the dual of (4.30).

Proof (Only if) We start with the system (P ′SD) given by Lemma 5 and further reformulate it. For
brevity we denote the constraint matrices on the left hand side by A′i throughout the process.

We first replace B′ by Z in (P ′SD). Since the resulting system is still badly behaved, by Theorem
2 there is a matrix of the form

V = λ0Z +

m∑
i=1

λiA
′
i =

(
V11 V12

V T
12 V22

)
,

with V11 ∈ Sr, V22 � 0, andR(V T
12) 6⊆ R(V22). By the form of Z we can assume λ0 = 0 (otherwise we

can replace V by V − λ0Z).

Note that the block of V comprising the last n − r columns must be nonzero. We pick an i such
that λi 6= 0, replace A′i by V, then switch A′i and A′m. Next we choose a maximal subset of the A′i
matrices so their blocks comprising the last n− r columns are linearly independent. We let A′m to be
one of these matrices (this can be done, since A′m is now the V certificate matrix), and permute the
A′i so this special subset becomes A′k+1, . . . , A

′
m for some k ≥ 0.

We finally add suitable multiples of A′k+1, . . . , A
′
m to A′1, . . . , A

′
k to zero out the last n− r columns

and rows of the latter, and arrive at the required reformulation.
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Example 8. (Examples 3, 4 and 6 continued) The first two of these examples are already in the
standard form (PSD,bad). Suppose now α 6= 1 in Example 6, i.e., the system (3.18) is badly behaved.
Recall that by a rotation we brought (3.18) to the simpler form (4.29). Then in (4.29) we set

B := B −A1 −A2 −A3,

A3 := A3 −A1 −A2,

and obtain the system

x1

0 0 1

0 1 0

1 0 −1

+ x2

0 1 0

1 0 1

0 1 0

+ x3

 1 0 α− 1

0 0 0

α− 1 0 0

 �
1 0 0

0 0 0

0 0 0

 , (4.31)

which is in the standard form (PSD,bad) (with k = 0). The objective function sup−x3 yields a zero
optimal value over (4.31) but there is no dual solution with the same value: we can argue this as in
the proof of the ”if” direction in Theorem 4.

Note that the certificate matrix V of Theorem 2 appears in the system (PSD,bad) as the last matrix
on the left hand side.

4.4 Reformulating (PSD) to verify that it is well behaved

We now turn to well behaved semidefinite systems, and in Theorem 5 we show how to reformulate
them to easily verify their good behavior. In Theorem 5 we also show block-diagonality of dual optimal
solutions. Note that the proof of the ”if” direction in Theorem 5 is easy, so the system (PSD,good) is
an easy-to-verify certificate of good behavior.

Theorem 5. The system (PSD) is well behaved if and only if it has a reformulation

k∑
i=1

xi

(
Fi 0

0 0

)
+

m∑
i=k+1

xi

(
Fi Gi

GT
i Hi

)
�

(
Ir 0

0 0

)
= Z, (PSD,good)

where

(1) the matrix Z is the maximum rank slack.

(2) The matrices Hi (i = k + 1, . . . ,m) are linearly independent.

(3) Hk+1 • I = · · · = Hm • I = 0.

Also, if (PSD) is well behaved, and the value of (SDPc) is finite, then there is an optimal dual matrix
in Sr+ ⊕ Sn−r+ .

Proof (If and block-diagonality) Let c be such that

v := sup {
m∑
i=1

cixi |x is feasible in (PSD,good) } (4.32)
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is finite. By the proof of Lemma 4 it suffices to prove that the dual of (4.32) has a block-diagonal
solution with value v. An argument like in the proof of Theorem 4 proves that xk+1 = · · · = xm = 0
holds for any x feasible in (4.32), so

v = sup {
k∑

i=1

cixi |
k∑

i=1

xiFi � Ir }. (4.33)

Since (4.33) satisfies Slater’s condition, there is Y11 feasible in its dual with Y11 • Ir = v.

As the Hi are linearly independent, we can choose Y22 ∈ Sn−r (which is possibly not psd) such
that

Y :=

(
Y11 0

0 Y22

)
satisfies the equality constraints of the dual of (4.32). We then add a positive multiple of the identity
to Y22 to make Y psd. Taking condition (3) into account we can see that after this operation Y is
feasible in the dual of (4.32) and clearly Y • Z = v holds. The proof is now complete.

Proof (Only if) We again start with the system (P ′SD) that Lemma 5 provides; now (P ′SD) is well
behaved. (We also note that the U matrix of Theorem 3 became the Y1 = 0⊕ In−r matrix of Lemma
5, after we rotated it.) We first replace B′ by Z. Next we choose a maximal subset of the A′i whose
lower principal (n − r) × (n − r) blocks are linearly independent. We permute the A′i if needed, to
make this subset A′k+1, . . . , A

′
m for some k ≥ 0.

To complete the process we add multiples of A′k+1, . . . , A
′
m to A′1, . . . , A

′
k to zero out the lower

principal (n − r) × (n − r) block of the latter. By Theorem 3 the upper right r × (n − r) block of
A′1, . . . , A

′
k and the symmetric counterpart also become zero. This concludes the proof.

Example 9. (Examples 5 and 6 continued) In Example 5 the system (3.17) is already in the form of
(PSD,good).

Suppose now α = 1 in Example 6, i.e., (3.18) is well behaved. Recall that we transformed this
system into the system (4.31) (in Example 9; note that this can be done independently of the value of
α). We then switch the first and third matrices in (4.31) to get

x1

1 0 0

0 0 0

0 0 0

+ x2

0 1 0

1 0 1

0 1 0

+ x3

0 0 1

0 1 0

1 0 −1

 �
1 0 0

0 0 0

0 0 0

 (4.34)

in the standard form (PSD,good) (with k = 1).

We next discuss some implications of Theorem 5. First, as the proof of the ”if” direction shows,
we can compute an optimal solution of (4.32) from an optimal solution of the reduced problem (4.33);
to do so, we only need to solve a linear system of equations (to find Y22) and do a linesearch (to make
Y22 psd).

Second, loosely speaking, the system (PSD,good) can be partitioned into a strictly feasible part, and
a linear part, which corresponds to variables xk+1, . . . , xm.

Third, how do we generate a well behaved semidefinite system? Theorem 5 can help us to do
this: we can choose matrices Z,Hi, Gi, Fi to obtain a system in the form (PSD,good), then arbitrarily
reformulate it, while keeping it well behaved. In fact, according to Theorem 5, we can obtain any well
behaved semidefinite system in this manner.
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In related work, Bomze et al in [10] describe methods to generate pathological conic LP instances
from other pathological conic LPs. Their results differ from ours, since they need to start with a
pathological conic LP.

We also note that using Lemma 1 the authors in Theorem 3.2 in [19] characterized the situation
when the projection of Sn+ onto some entries is closed; we can view Theorem 5 as a generalization of
this result.

4.5 Badly behaved semidefinite systems are in NP ∩ co-NP . Certificates to
verify (non)closedness of the linear image of the semidefinite cone

We now state our main complexity result:

Theorem 6. Badly (and well) behaved semidefinite systems are in NP ∩ co-NP in the real number
model of computing.

Proof We give the following certificates to check the status of (PSD): (1) a reformulation of (PSD)
into the form (PSD,bad) or (PSD,good); (2) the Yj matrices of Lemma 5 to verify that Z is indeed a
maximum rank slack; (3) a matrix T = Ir ⊕M, and µ ∈ Rm, which were used to transform (PSD)
into (PSD,bad) or (PSD,good).

The verifier first checks that (PSD,bad) or (PSD,good) is indeed a reformulation of (PSD); then verifies
the properties of (PSD,bad) or (PSD,good) as given in Theorems 4 or 5; then the proof of the “If” part
in Theorems 4 or 5 shows that these systems are well- or badly behaved.

Assume that we are working with the real number model of computing. We don’t claim to have
a polynomial time algorithm to decide whether (PSD) is badly behaved; in particular, we don’t have
a polynomial time algorithm to compute the Z and V excluded matrices of Theorem 2, or one to
compute the reformulated systems (PSD,bad) or (PSD,good).

In analogy, if (PSD) is feasible, we can verify this in polynomial time (by plugging in a feasible
x). If (PSD) is infeasible, we can also verify this in polynomial time, using one of the infeasibility
certificates in [34, 24, 46, 25]. However, we don’t know how to decide in polynomial time whether
(PSD) is feasible.

Thus feasibility of a semidefinite system is similar to the bad behavior of a feasible system: both
properties are in NP ∩ co-NP, but neither is known to be in P.

To conclude this section, we briefly discuss easy-to-verify certificates for the (non)closedness of the
linear image of Sn+. All linear maps that map from Sn to Rm are of the form A∗ : Sn → Rm, where

A(x) =

m∑
i=1

xiAi, A∗(Y ) = (A1 • Y, . . . , Am • Y )T

and Ai ∈ Sn for all i. We know that A∗(Sn+) is closed if and only if the homogeneous system

m∑
i=1

xiAi � 0 (4.35)

is well behaved (this is immediate from Lemma 2). Thus reformulating this homogeneous system
into the standard forms of (PSD,bad) or (PSD,good) gives easy-to-verify certificates of the closedness or
nonclosedness of A∗(Sn+).
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To illustrate this point we revisit Examples 1 and 2. The semidefinite system

−M(x) � 0, (4.36)

where M is the linear map defined there, is badly behaved (since the image of the semidefinite cone
under M∗ is not closed). We can apply the machinery of this paper to study the system (4.36); e.g.,
we can find the Z and V excluded matrices of Theorem 2, and reformulate (4.36) into the standard
form (PSD,bad). We leave the details to the reader.

5 Concluding remarks

Theorem 2 gives the Z and V excluded matrices to characterize bad behavior of (PSD). We can carry
this idea further, and prove the following result:

Corollary 2. Suppose that in addition to the operations of Definition 2 we allow a sequence of the
following operations:

(1) Delete row i and column i from all matrices, where i ∈ {1, . . . , n}.

(2) Delete a constraint matrix.

Then we can bring any badly behaved semidefinite system to the form of

x1

(
α 1

1 0

)
�

(
1 0

0 0

)
, (5.37)

where α is some real number.

Proof Suppose that (PSD) is badly behaved and let us recall the form of the maximum rank slack
in Assumption 1. We first add multiples of the Ai to B to make sure that the right hand side is the
maximum rank slack. Next we let V to be a certificate matrix as given by Theorem 2; we can assume
that V is the linear combination of the Ai only; we reformulate, so V becomes a constraint matrix.

As we show in Lemma 3, we can apply a rotation TT ()T to V (where T = Ir ⊕ M for some
invertible M) to bring V to the form

V =

V11 V12 V13

V T
12 Is 0

V T
13 0 0

 , (5.38)

where V11 is r × r, s ≥ 0 and V13 6= 0. We apply the rotation TT ()T to all constraint matrices, and
after this operation V is of the form specified in (5.38). Suppose now that vij 6= 0, where 1 ≤ i ≤ r
and r+ s+ 1 ≤ j ≤ n. We rescale V to make sure that vij = 1 holds, then delete all rows and columns
from the constraint matrices whose index is not i nor j, to obtain system (5.37).

Excluded minor results in graph theory, such as Kuratowski’s theorem, show that a graph lacks a
certain fundamental property, if and only if it can be reduced to a minimal such graph by a sequence
of elementary operations. Corollary 2 resembles such results, since system (5.37) is trivially badly
behaved.
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We can define the well- or badly behaved nature of conic linear systems in a different form, and
characterize such systems. For instance, we call the dual system

A∗y = c, y ∈ K∗, (5.39)

well behaved, if for all b dual objective functions the values of (Dc) and of (Pc) agree, and the latter
value is attained, when it is finite. System (5.39) can be recast in the primal form

Bx ≤K∗ y0, (5.40)

where B and y0 satisfy R(B) = N (A∗) and A∗y0 = c. It is straightforward to show that (5.39) is well
behaved, if and only if (5.40) is, and to translate the conditions of Theorem 1 to characterize when
(5.39) is well- or badly behaved. We leave the details to the reader.

In the special case of semidefinite systems we can obtain the following result:

Theorem 7. Suppose that in the system

Y � 0, Ai • Y = ci (i = 1, . . . ,m) (5.41)

the maximum rank feasible matrix is

Ȳ =

(
Ir 0

0 0

)
for some r ≥ 0.

Then (5.41) is badly behaved if and only if there is a matrix V and a real number λ such that

Ai • V = λci (i = 1, . . . ,m),

and

V =

(
V11 V12

V T
12 V22

)
,

where V11 is r by r, V22 � 0, and R(V T
12) 6⊆ R(V22).

We can apply similar arguments to conic linear systems in a subspace form

K ∩ (L+ x0),

to characterize their well- or badly behaved status.

We can also characterize badly behaved second order conic systems similarly as we did it for (PSD)
in Theorem 2. This result is in version 2 of the online version of the paper on arxiv.org.

We finally mention a subject for possible future work. The interplay of algebraic geometry and
optimization is an active research area: see for instance the recent monograph by Blekherman et al
[8], and the paper of Klep and Schweighofer [24]. It would be interesting to see how our certificates of
bad and good behavior can be interpreted in the language of algebraic geometry.

A A larger badly behaved semidefinite system

In this appendix we give a larger badly behaved semidefinite system to illustrate the standard form
reformulation (PSD,bad). What is nice about this example is that the bad behavior of the original (not
reformulated) system is very difficult to verify by an ad hoc argument, whereas the bad behavior of
the reformulated system is self-evident.
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Example 10. Consider the badly behaved semidefinite system

x1


4 3 −5 −3

3 −2 0 −2

−5 0 −12 −8

−3 −2 −8 −4

 + x2


14 10 −15 −9

10 −6 0 −6

−15 0 −36 −24

−9 −6 −24 −12

 + x3


8 6 −5 −3

6 −4 0 −2

−5 0 −12 −8

−3 −2 −8 −4

 + x4


20 15 −25 −13

15 −10 −1 −9

−25 −1 −58 −38

−13 −9 −38 −18



�


45 32 −55 −31

32 −19 −1 −21

−55 −1 −130 −86

−31 −21 −86 −42

 .

(A.42)

We show how to bring (A.42) into the form of (PSD,bad), so let us denote the constraint matrices
on the left by Ai (i = 1, . . . , 4), and the right hand side matrix by B. Let

T =


1 0 0 0

0 1 0 0

0 0 −1/2 1/2

0 0 3/2 −1/2

 ,

apply the rotation TT ()T to all Ai and B, then perform the following operations:

B := B −A1 − 2A2 +A3 −A4,

A4 := −5A1 +A4,

A3 := −2A1 +A3,

A2 := −3A1 +A2,

A1 := A1 − 2A2 +A3.

We obtain the system

x1


0 1 0 0

1 −2 0 0

0 0 0 0

0 0 0 0

 + x2


2 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 + x3


0 0 2 1

0 0 3 −1

2 3 0 2

1 −1 2 0

 + x4


0 0 3 −1

0 0 2 −1

3 2 2 0

−1 −1 0 0



�


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 .

(A.43)

In (A.43) the matrices

Y1 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 , andY2 =


0 0 0 1

0 0 0 1

0 0 2 0

1 1 0 0

 (A.44)

are orthogonal to all the constraint matrices, thus they prove that the rank of any slack is at most
two. So in (A.43) the right hand side is the maximum rank slack.

It is easy to see that (A.43) is badly behaved: following the proof of the “If” implication in Theorem
4, one can see that the objective function sup−x4 yields a value of 0 over (A.43), but there is no dual
solution with the same value.
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B Proof of Lemmas 2 and 3

In this section we prove Lemmas 2 and 3.

First we need some definitions and notation. For optimization problems we use the symbol val()
to denote their optimal value. For program (Dc) we say that {yi} ⊆ K∗ is an asymptotically feasible
(AF) solution, if A∗yi → c, and the asymptotic value of (Dc) is

aval(Dc) = inf{ lim b∗yi | {yi} is asymptotically feasible in (Dc) },

where the infimum is taken over those AF solutions for which lim b∗yi exists.

We prove Lemma 2 by adapting an argument from [20]. We also rely on the following lemma due
to Duffin:

Lemma 6. (Duffin [21]) Problem (Pc) is feasible with val(Pc) < +∞, iff (Dc) is asymptotically
feasible with aval(Dc) > −∞, and if these equivalent statements hold, then

val(Pc) = aval(Dc).

Proof of Lemma 2 We will use the notation

Ah =

(
A b

0 1

)

(which is also used in the proof of Theorem 1).

Proof (If) Suppose thatA∗h(K×R+)∗ is closed and let c be an objective vector, such that c0 := val(Pc)
is finite. Then aval(Dc) = c0 holds by Lemma 6, so there is {yi} ⊆ K∗ s.t. A∗yi → c, and b∗yi → c0,
i.e.,

(c, c0) ∈ cl(A, b)∗K∗ ⊆ clA∗h(K∗ × R+) = A∗h(K∗ × R+).

Hence there is y ∈ K∗, s ≥ 0 such that A∗y = c, and b∗y + s = c0; by weak duality b∗y = c0 must
hold. So y is a feasible solution of (Dc) with value c0, and this completes the proof.

Proof (Only if) To obtain a contradiction, suppose that A∗h(K × R+)∗ is not closed; then we will
show that (P ) is badly behaved. Let us choose c and c0 such that

(c, c0) ∈ clA∗h(K∗ × R+) \ A∗h(K∗ × R+).

By (c, c0) ∈ clA∗h(K∗ × R+) there is {(yi, si)} ⊆ K∗ × R+ s.t. A∗yi → c, and b∗yi + si → c0. Hence

val(Pc) = aval(Dc) ≤ c0,

where the equality comes from Lemma 6.

However, (c, c0) 6∈ A∗h(K∗×R+) shows that no feasible solution of (Dc) can have value ≤ c0. Hence
either val(Dc) > c0 (this includes the case val(Dc) = +∞, i.e., when (Dc) is infeasible), or val(Dc) is
not attained.

To prove Lemma 3 we need another lemma, which is mostly based on results surveyed in [28].
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Lemma 7. Let C be a closed convex cone, x ∈ C, and E the smallest face of C that contains x. Then

dir(x,C) = C + linE, (B.45)

ldir(x,C) = linE, (B.46)

cl dir(x,C) = (C∗ ∩ x⊥)∗, (B.47)

tan(x,C) = (C∗ ∩ x⊥)⊥. (B.48)

Proof Statements (B.45) and (B.47) are in Lemma 3.2.1 in [28] (in Lemma 2.7 in the online version).
We also proved statement (B.48) there, assuming that C is nice. In fact, it follows from (B.47) and
(1.6) in general.

In (B.46) the containment ⊇ is trivial. To see ⊆ let y ∈ ldir(x,C), then x± εy ∈ C for some ε > 0.
Hence x± εy ∈ E, so εy ∈ linE, and this completes the proof.

Proof of Lemma 3 Let F be the smallest face of Sn+ that contains Z. Then clearly F = Sr+ ⊕ {0},
and Sn+ ∩ Z⊥ = {0 } ⊕ Sn−r+ . Hence statements (3.20)-(3.22) follow by taking C = Sn+, x = Z, E = F
in Lemma 7.

Next, fix Y ∈ cl dir(Z,Sn+), and partition it as in the right hand side set in (3.21). Then (3.23) is
equivalent to

Y ∈ dir(Z,Sn+) ⇔ R(Y T
12) ⊆ R(Y22). (B.49)

Let P be an orthogonal matrix, such that PTY22P = Is ⊕ 0, where s is the number of positive
eigenvalues of Y22 and T = Ir ⊕ P.

Define

V := TTY T =

(
Y11 Y12P

PTY T
12 PTY22P

)
=

(
Y11 Y12P

PTY T
12 Is ⊕ 0

)
.

Next we claim

Y ∈ dir(Z,Sn+) ⇔ V ∈ dir(Z,Sn+), (B.50)

R(Y T
12) ⊆ R(Y22) ⇔ R(PTY T

12) ⊆ R(PTY22P ). (B.51)

Indeed, (B.50) follows from TTZT = Z, and the definition of feasible directions. As to (B.51), the left
hand side statement holds, iff there is a matrix D with

Y T
12 = Y22D, (B.52)

and the right hand side statement holds, iff there is a matrix D′ such that

PTY T
12 = PTY22PD

′. (B.53)

If D satisfies (B.52), then D′ := P−1D satisfies (B.53). Conversely, if (B.53) holds for D′, then
D := PD′ verifies (B.52).

Next, partition Y12P as (V12, V13), so that V12 has s columns; then (B.51) is equivalent to V13 = 0.
So we only need to prove

V ∈ dir(Z,Sn+) ⇔ V13 = 0. (B.54)

Consider the matrix Z + εV for some ε > 0. If V13 6= 0, then Z + εV is not positive semidefinite for
any ε > 0, and this proves the direction ⇒ . As to ⇐, if V13 = 0, then by the Schur-complement
condition for positive semidefiniteness we have that Z + εV � 0 iff

(Ir + εV11)− (εV12)(εIs)
−1(εV T

12) � 0,
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and the latter is clearly true for some small ε > 0.
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rithms. Springer-Verlag, 1993.

[24] Igor Klep and Markus Schweighofer. An exact duality theory for semidefinite programming based
on sums of squares. Math. Oper. Res., 38(3):569–590, 2013.
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[33] Imre Pólik and Tamás Terlaky. Exact duality for optimization over symmetric cones. Technical
report, Lehigh University, Betlehem, PA, USA, 2009.

[34] Motakuri V. Ramana. An exact duality theory for semidefinite programming and its complexity
implications. Math. Program. Ser. B, 77:129–162, 1997.

[35] Motakuri V. Ramana and Robert Freund. On the ELSD duality theory for SDP. Technical report,
MIT, 1996.
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