557 research outputs found

    Magnetic Phase Diagrams of Manganites-like Local-Moment Systems with Jahn-Teller distortions

    Full text link
    We use an extended two-band Kondo lattice model (KLM) to investigate the occurrence of different (anti-)ferromagnetic phases or phase separation depending on several model parameters. With regard to CMR-materials like the manganites we have added a Jahn-Teller term, direct antiferromagnetic coupling and Coulomb interaction to the KLM. The electronic properties are self-consistently calculated in an interpolating self-energy approach with no restriction to classical spins and going beyond mean-field treatments. Further on we do not have to limit the Hund's coupling to low or infinite values. Zero-temperature phase diagrams are presented for large parameter intervals. There are strong influences of the type of Coulomb interaction (intraband, interband) and of the important parameters (Hund's coupling, direct antiferromagnetic exchange, Jahn-Teller distortion), especially at intermediate couplings.Comment: 11 pages, 9 figures. Accepted for publication in Phys. Rev.

    EGRET Gamma-Ray Blazars: Luminosity Function and Contribution to the Extragalactic Gamma-Ray Background

    Get PDF
    We describe the properties of the blazars detected by EGRET and summarize the results on the calculations of the evolution and luminosity function of these sources. Of the large number of possible origins of extragalactic diffuse gamma-ray emission, it has been postulated that active galaxies might be one of the most likely candidates. However, some of our recent analyses indicate that only 25 percent of the diffuse extragalactic emission measured by SAS-2 and EGRET can be attributed to unresolved gamma-ray blazars. Therefore, other sources of diffuse extragalactic gamma-ray emission must exist. We present a summary of these results in this article.Comment: 4 pages, accepted for publication in Astroparticle Physic

    Neutrino Background Flux from Sources of Ultrahigh-Energy Cosmic-Ray Nuclei

    Get PDF
    Motivated by Pierre Auger Observatory results favoring a heavy nuclear composition for ultrahigh-energy (UHE) cosmic rays, we investigate implications for the cumulative neutrino background. The requirement that nuclei not be photodisintegrated constrains their interactions in sources, therefore limiting neutrino production via photomeson interactions. Assuming a dNCR/dECRECR2dN_{\rm CR}/dE_{\rm CR} \propto E_{\rm CR}^{-2} injection spectrum and photodisintegration via the giant dipole resonance, the background flux of neutrinos is lower than Eν2Φν109GeVcm2s1sr1E_\nu^2 \Phi_\nu \sim {10}^{-9} {\rm GeV} {\rm cm}^{-2} {\rm s}^{-1} {\rm sr}^{-1} if UHE nuclei ubiquitously survive in their sources. This is smaller than the analogous Waxman-Bahcall flux for UHE protons by about one order of magnitude, and is below the projected IceCube sensitivity. If IceCube detects a neutrino background, it could be due to other sources, e.g., hadronuclear interactions of lower-energy cosmic rays; if it does not, this supports our strong restrictions on the properties of sources of UHE nuclei.Comment: 7 pages, 3 figure

    On photohadronic processes in astrophysical environments

    Full text link
    We discuss the first applications of our newly developed Monte Carlo event generator SOPHIA to multiparticle photoproduction of relativistic protons with thermal and power law radiation fields. The measured total cross section is reproduced in terms of excitation and decay of baryon resonances, direct pion production, diffractive scattering, and non-diffractive multiparticle production. Non--diffractive multiparticle production is described using a string fragmentation model. We demonstrate that the widely used `Δ\Delta--approximation' for the photoproduction cross section is reasonable only for a restricted set of astrophysical applications. The relevance of this result for cosmic ray propagation through the microwave background and hadronic models of active galactic nuclei and gamma-ray bursts is briefly discussed.Comment: 9 pages including 4 embedded figures, submitted to PAS

    Interactions of UHE cosmic ray nuclei with radiation during acceleration: consequences on the spectrum and composition

    Get PDF
    In this paper, we study the diffusive shock acceleration of cosmic-ray protons and nuclei, taking into account all the relevant interaction processes with photon backgrounds. We investigate how the competition between protons and nuclei is modified by the acceleration parameters such as the acceleration rate, its rigidity dependence, the photon density and the confinement capability of the sources. We find that in the case of interaction-limited acceleration processes protons are likely to be accelerated to higher energies than nuclei, whereas for confinement-limited acceleration nuclei are accelerated to higher energies than protons. Finally, we discuss our results in the context of possible astrophysical accelerators, and in the light of recent cosmic-ray data.Comment: 14 pages, 11 figures A few paragraphs and one figure added for clarity, figures slightly redesigned, no changes in the result

    Photon-Photon Entanglement with a Single Trapped Atom

    Full text link
    An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic - an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.Comment: 5 pages, 4 figure

    High energy neutrino early afterglows from gamma-ray bursts revisited

    Get PDF
    The high energy neutrino emission from gamma-ray bursts (GRBs) has been expected in various scenarios. In this paper, we study the neutrino emission from early afterglows of GRBs, especially under the reverse-forward shock model and late prompt emission model. In the former model, the early afterglow emission occurs due to dissipation made by an external shock with the circumburst medium (CBM). In the latter model, internal dissipation such as internal shocks produces the shallow decay emission in early afterglows. We also discuss implications of recent Swift observations for neutrino signals in detail. Future neutrino detectors such as IceCube may detect neutrino signals from early afterglows, especially under the late prompt emission model, while the detection would be difficult under the reverse-forward shock model. Contribution to the neutrino background from the early afterglow emission may be at most comparable to that from the prompt emission unless the outflow making the early afterglow emission loads more nonthermal protons, and it may be important in the very high energies. Neutrino-detections are inviting because they could provide us with not only information on baryon acceleration but also one of the clues to the model of early afterglows. Finally, we compare various predictions for the neutrino background from GRBs, which are testable by future neutrino-observations.Comment: 18 pages, 12 figures, accepted for publication in PR

    Remote Entanglement between a Single Atom and a Bose-Einstein Condensate

    Full text link
    Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μ\mus exceeds the photon duration by two orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information

    High Energy Neutrino Emission and Neutrino Background from Gamma-Ray Bursts in the Internal Shock Model

    Get PDF
    High energy neutrino emission from GRBs is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of UHECRs. We find that the obtained neutrino background can be comparable with the prediction of Waxman & Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.Comment: 14 pages, 17 figures, accepted for publication in PRD, with extended descriptions. Conclusions unchange

    Multi-Wavelength Observations of the HBL Object 1ES 1011+496 in Spring 2008

    Full text link
    In the spring of 2008 MAGIC organised multi-wavelength (MWL) observations of the blazar 1ES 1011+496. 1ES 1011+496 is a high-frequency peaked BL Lac object discovered at VHE gamma-rays by MAGIC in spring 2007 during an optical outburst reported by the Tuorla Blazar Monitoring Programme. MAGIC re-observed the source during the 2008 MWL campaign which also included the Mets\"ahovi, KVA, Swift and AGILE telescopes. This was the first MWL campaign on this source that also included VHE coverage. MAGIC observed 1ES 1011+496 from March 4th to May 24th 2008 for a total of 27.9 hours, of which 20 h remained after quality cuts. The observations resulted in a detection of the source a ~7 sigma significance level with a mean flux and spectral index similar to those during the discovery. Here we will present the results of the MAGIC observations of the source in combination with contemporaneous observations at other wavelengths (radio, optical, X-rays, high energy gamma-rays) and discuss their implications on the modelling of the spectral energy distribution.Comment: 4 pages, 5 figures, contribution to the 32nd ICRC, Beijing 201
    corecore