359 research outputs found

    Culling sick mitochondria from the herd

    Get PDF
    The PINK1–Parkin pathway plays a critical role in mitochondrial quality control by selectively targeting damaged mitochondria for autophagy. In this issue, Tanaka et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201007013) demonstrate that the AAA-type ATPase p97 acts downstream of PINK1 and Parkin to segregate fusion-incompetent mitochondria for turnover. p97 acts by targeting the mitochondrial fusion-promoting factor mitofusin for degradation through an endoplasmic reticulum–associated degradation (ERAD)-like mechanism

    Predicting selective drug targets in cancer through metabolic networks

    Get PDF
    The authors develop a genome-scale model of cancer metabolism and use it to predict genes that are essential for cancer cell growth. An array of target combinations are then identified that could potentially provide novel selective treatments for specific cancers

    Street Earnings Activation Delay

    Get PDF
    Street earnings are non-GAAP earnings, adjusted for consistency with the analyst majority basis and disseminated by forecast data providers (FDPs). We find that the time it takes an FDP to incorporate street earnings in its products (activation delay, hereafter) reflects variation in the difficulty of constructing street earnings, investor demand for timely street earnings, and FDPs' limited attention and resources. Furthermore, the market reaction to reported earnings is more timely when activation delay is shorter, and price discovery is highly concentrated during the hour after street earnings are activated. Finally, activation delay increases the delay with which street earnings are incorporated in analyst forecasts. We conclude that frictions in information processing prevent market participants from instantaneously constructing and incorporating street earnings in their decisions, and that FDPs play a key role in alleviating these frictions

    Adrenergic β2 receptor activation stimulates anti-inflammatory properties of dendritic cells in vitro

    Get PDF
    Vagal nerve efferent activation has been shown to ameliorate the course of many inflammatory disease states. This neuromodulatory effect has been suggested to rest on acetylcholine receptor (AChR) activation on tissue macrophages or dendritic cells (DCs). In more recent studies, vagal anti-inflammatory activity was shown involve adrenergic, splenic, pathways. Here we provide evidence that the adrenergic, rather than cholinergic, receptor activation on bone marrow derived DCs results in enhanced endocytosis uptake, enhanced IL-10 production but a decreased IL-6, IL-12p70 and IL-23 production. In antigen specific T cell stimulation assays, adrenergic β2 receptor activation on bone marrow DCs led to an enhanced potential to induce Foxp3 positive suppressive Treg cells. These effects were independent of IL10-R activation, TGFβ release, or retinoic acid (RA) secretion. Hence, adrenergic receptor β2 activation modulates DC function resulting in skewing towards anti-inflammatory T cell phenotypes

    The psychophysics of uneconomical choice: non-linear reward evaluation by a nectar feeder

    Get PDF
    Uneconomical choices by humans or animals that evaluate reward options challenge the expectation that decision-makers always maximize the return currency. One possible explanation for such deviations from optimality is that the ability to sense differences in physical value between available alternatives is constrained by the sensory and cognitive processes for encoding profitability. In this study, we investigated the capacity of a nectarivorous bat species (Glossophaga commissarisi) to discriminate between sugar solutions with different concentrations. We conducted a two-alternative free-choice experiment on a population of wild electronically tagged bats foraging at an array of computer-automated artificial flowers that recorded individual choices. We used a Bayesian approach to fit individual psychometric functions, relating the strength of preferring the higher concentration option to the intensity of the presented stimulus. Psychometric analysis revealed that discrimination ability increases non-linearly with respect to intensity. We combined this result with a previous psychometric analysis of volume perception. Our theoretical analysis of choice for rewards that vary in two quality dimensions revealed regions of parameter combinations where uneconomic choice is expected. Discrimination ability may be constrained by non-linear perceptual and cognitive encoding processes that result in uneconomical choice

    Multisite Comparison of CD4 and CD8 T-Lymphocyte Counting by Single- versus Multiple-Platform Methodologies: Evaluation of Beckman Coulter Flow-Count Fluorospheres and the tetraONE System

    Get PDF
    New analytic methods that permit absolute CD4 and CD8 T-cell determinations to be performed entirely on the flow cytometer have the potential for improving assay precision and accuracy. In a multisite trial, we compared two different single-platform assay methods with a predicate two-color assay in which the absolute lymphocyte count was derived by conventional hematology. A two-color method employing lymphocyte light scatter gating and Beckman Coulter Flow-Count fluorospheres for absolute counting produced within-laboratory precision equivalent to that of the two-color predicate method, as measured by coefficient of variation of replicate measurements. The fully automated Beckman Coulter tetraONE System four-color assay employing CD45 lymphocyte gating, automated analysis, and absolute counting by fluorospheres resulted in a small but significant improvement in the within-laboratory precision of CD4 and CD8 cell counts and percentages suggesting that the CD45 lymphocyte gating and automated analysis might have contributed to the improved performance. Both the two-color method employing Flow-Count fluorospheres and the four-color tetraONE System provided significant and substantial improvements in between-laboratory precision of absolute counts. In some laboratories, absolute counts obtained by the single-platform methods showed small but consistent differences relative to the predicate method. Comparison of each laboratory's absolute counts with the five-laboratory median value suggested that these differences resulted from a bias in the absolute lymphocyte count obtained from the hematology instrument in some laboratories. These results demonstrate the potential for single-platform assay methods to improve within-laboratory and between-laboratory precision of CD4 and CD8 T-cell determinations compared with conventional assay methods

    Conflicted Emotions Following Trust-based Interaction

    Get PDF
    We investigated whether 20 emotional states, reported by 170 participants after participating in a Trust game, were experienced in a patterned way predicted by the “Recalibrational Model” or Valence Models. According to the Recalibrational Model, new information about trust-based interaction outcomes triggers specific sets of emotions. Unlike Valence Models that predict reports of large sets of either positive or negative emotional states, the Recalibrational Model predicts the possibility of conflicted (concurrent positive and negative) emotional states. Consistent with the Recalibrational Model, we observed reports of conflicted emotional states activated after interactions where trust was demonstrated but trustworthiness was not. We discuss the implications of having conflicted goals and conflicted emotional states for both scientific and well-being pursuits

    Degradation of HIF-1alpha under Hypoxia Combined with Induction of Hsp90 Polyubiquitination in Cancer Cells by Hypericin: a Unique Cancer Therapy

    Get PDF
    The perihydroxylated perylene quinone hypericin has been reported to possess potent anti-metastatic and antiangiogenic activities, generated by targeting diverse crossroads of cancer-promoting processes via unique mechanisms. Hypericin is the only known exogenous reagent that can induce forced poly-ubiquitination and accelerated degradation of heat shock protein 90 (Hsp90) in cancer cells. Hsp90 client proteins are thereby destabilized and rapidly degraded. Hsp70 client proteins may potentially be also affected via preventing formation of hsp90-hsp70 intermediate complexes. We show here that hypericin also induces enhanced degradation of hypoxia-inducible factor 1α (HIF-1α) in two human tumor cell lines, U87-MG glioblastoma and RCC-C2VHL−/− renal cell carcinoma and in the non-malignant ARPE19 retinal pigment epithelial cell line. The hypericin-accelerated turnover of HIF-1α, the regulatory precursor of the HIF-1 transcription factor which promotes hypoxic stress and angiogenic responses, overcomes the physiologic HIF-1α protein stabilization which occurs in hypoxic cells. The hypericin effect also eliminates the high HIF-1α levels expressed constitutively in the von-Hippel Lindau protein (pVHL)-deficient RCC-C2VHL−/− renal cell carcinoma cell line. Unlike the normal ubiquitin-proteasome pathway-dependent turnover of HIF-α proteins which occurs in normoxia, the hypericin-induced HIF-1α catabolism can occur independently of cellular oxygen levels or pVHL-promoted ubiquitin ligation of HIF-1α. It is mediated by lysosomal cathepsin-B enzymes with cathepsin-B activity being optimized in the cells through hypericin-mediated reduction in intracellular pH. Our findings suggest that hypericin may potentially be useful in preventing growth of tumors in which HIF-1α plays pivotal roles, and in pVHL ablated tumor cells such as renal cell carcinoma through elimination of elevated HIF-1α contents in these cells, scaling down the excessive angiogenesis which characterizes these tumors

    MuRF1 activity is present in cardiac mitochondria and regulates reactive oxygen species production in vivo

    Get PDF
    Erratum: https://link.springer.com/article/10.1007/s10863-014-9597-1MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1’s role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1−/− mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. This is an factual error as written; however, total oxygen consumption was decreased. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1−/− hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2’s regulation of mitochondrial function.Funding support from Medical Research Council, United Kingdom; National Institutes of Health, United States; British Heart Foundation, United Kingdo

    Does Sex Speed Up Evolutionary Rate and Increase Biodiversity?

    Get PDF
    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity
    corecore