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Abstract

MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I

and myosin heavy chain for degradation. While MuRF1 has been reported to interact with

mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1’s role in

regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial

function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic

and MuRF1−/− mouse models to determine the role of MuRF1 in intermediate energy metabolism

and ROS production. We identified a significant decrease in reactive oxygen species production in

cardiac muscle fibers from MuRF1 transgenic mice with increased alpha-MHC driven MuRF1

expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no

alterations in the respiratory chain complex I and II function. Working perfusion experiments on

MuRF1 transgenic hearts demonstrated significant changes in glucose or oleate oxidation;

however, total oxygen consumption was decreased. This data provides evidence for MuRF1 as a
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novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1

expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of

apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function

phenotype identified in MuRF1−/− hearts may be due to the overlapping interactions of MuRF1

and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here,

implying a duplicity in MuRF1 and MuRF2’s regulation of mitochondrial function.
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Introduction

Muscle Ring Finger-1 (MuRF1) is an ubiquitin ligase initially identified for its role in the

regulation of skeletal muscle [1] and cardiac atrophy [2] in vivo. In the absence of MuRF1,

mice are protected from muscle loss following skeletal muscle denervation, while

dexamethasone-induced cardiac atrophy is almost completely inhibited [1,2]. The expression

of MuRF1 is striated muscle specific [1] and limited to the M-line and cytoplasm within

cardiomyocytes [3,4]. Consistent with its role in degrading sarcomere proteins during

atrophy, MuRF1 has been found to interact with numerous sarcomeric proteins, including

troponin I, troponin T, titin, telethonin, myosin light chain 2, and nebulin [5] and has been

reported to be a bona fide ubiquitin ligase that targets the degradation of troponin I [6] and

myosin heavy chain [7]. Taken together, these studies mechanistically link MuRF1 activity

to cardiac and skeletal muscle atrophy [1] in regulating the deconstruction of the sarcomere

proteins through its poly-ubiquitination and subsequent degradation by the proteasome.

Since ubiquitin ligases exert their activity by placing ubiquitin on specific substrates, early

MuRF1 studies focused on determining proteins that MuRF1 interacted with [5]. Previous

yeast two hybrid studies using MuRF1 as bait identified >500 clones (of which 110 were

sequenced). While it was not surprising that 23 prey clones were derived (and confirmed)

from nine different genes coding for myofibrillar proteins, it was, however, intriguing that

27 prey clones from 11 different genes coded for enzymes involved in energy metabolism,

including creatine kinase [5]. We have found creatine kinase to be a MuRF1 substrate in the

heart, which appears to contribute to the susceptibility to heart failure after pressure-

overload induced cardiac hypertrophy in vivo [8]. Of these 11 genes identified in energy

metabolism, 4 are involved in mitochondrial oxidative phosphorylation (NADH

dehydrogenase, aka ubiquinone, NADH ubiquinone oxidoreductase, and 3-

hydroxyisobutyrate dehydrogenase), including the mitochondrial ATP synthase beta-subunit

involved in the regeneration of ATP [5]. While these findings demonstrate that MuRF1

interacts specifically with proteins involved in oxidative phosphorylation and mitochondrial

biology, the functional significance of these findings has not been reported.

Recent studies have used a proteomics approach to identify ubiquitinated proteins in the

heart [9]. When the identified proteins were categorized by cellular sub-compartment, the

greatest number of ubiquitinated proteins were found in the mitochondria (38.0%), followed
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by the cytosol (27.3%) [9]. Despite the fact that the mitochondria contain most of the

ubiquitinated proteins in the heart, few ubiquitin ligases that drive these processes have been

identified in the mitochondria in any cell type. Examples include cell division control

protein 53 (Cdc53), mitochondrial distribution and morphology protein 30 (MDM30),

MITOL/MARCHV membrane-associated ring finger 5 [10,11], mitochondrial ubiquitin

ligase activator of NF-κB (MULAN) [12], ring finger protein 185 (RNF185) [13], and the

deubiquitnating enzyme 16 (Ubp16)/ubiquitin specific peptidase 30 (USP30) which broadly

play a role in mitochondrial dynamics [14,15]. While two of these mitochondrial ubiquitin

ligases are incidentally found in the heart (MARCH5 and MULAN/MAPL), the role of

cardiac ubiquitin ligases have not previously been described in the heart [15].

In the present study, we identify for the first time that the striated muscle restricted MuRF1

is prominently present in cardiomyocyte mitochondria to regulate the oxygen consumption

and flux through the Krebs cycle without affecting the permeability transition (calcium

handling). Most significantly, increasing cardiomyocyte MuRF1 results in significant

reductions in the mitochondrial production of reactive oxygen species disproportionately to

the decreased oxygen consumption without affecting complex I and complex II activity, the

site at which reactive oxygen species are most predominantly formed. These studies indicate

mechanism(s) by which increasing MuRF1 may prove to be cardioprotective in clinical

scenarios such as cardiac ischemia/reperfusion injury, in addition to MuRF1’s regulation of

c-Jun N-terminal protein kinases (JNK) signaling through c-Jun, recently described by our

laboratory [16].

Materials and Methods

Muscle Ring Finger-1 (MuRF1) transgenic and MuRF1−/− mouse models

MuRF1 cardiac-specific transgenic (Tg+) and MuRF1−/− mice ~ 12 weeks of age were

used in the present studies, as recently described by our laboratory previously [8,17]. The α-

myosin heavy chain (MHC) promoter driven murine MuRF1 gene (GenBank

NM_001039048) has cardiac MuRF1 transgene expression levels ~45 fold WT levels [8].

The creation of MuRF1−/− mice has previously been described [1] to have no apparent

cardiac phenotype at a baseline state [17]. No obvious developmental defects have been

detected compared to wildtype (WT) littermates in size, activity, or longevity. All

experiments used male WT littermates as controls. The mouse experiments were approved

by the Institutional Animal Care and Use Committee (IACUC) review boards at the

University of North Carolina and East Carolina University, and were performed in

accordance with federal guidelines.

Preparation of permeabilized cardiac myofibers

The use of permeabilized cardiac myofibers has been previously described [18,19].

Approximately 30 mg of left ventricular tissue was dissected and placed in ice-cold buffer X

[50 mM MES, 7.23 mM K2EGTA, 2.77 mM CaK2EGTA, 20 mM imidazole, 0.5 mM DTT

(dithiothreitol), 20 mM taurine, 5.7 mM ATP, 14.3 mM PCr (phosphocreatine) and 6.56 mM

MgCl2·6H2O (pH 7.1, 290 mOsm)], then trimmed of connective and vascular tissue.

Approximately 5 muscle bundles were prepared from each animal and gently separated
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along their longitudinal axis with needle-tipped forceps, treated with 50 μg/ml saponin in

ice-cold buffer X, incubated for 30 min at 4°C [20]. The fibers were then used for mO2

(mitochondrial O2) consumption experiments and placed in buffer Z [105 mM K-Mes, 30

mM KCl, 1 mM EGTA, 10 mM K2HPO4, 5 mM MgCl2·6H2O, 0.005 mM glutamate and

0.002 mM malate with 5.0 mg/ml BSA (pH 7.4, 290 mOsm)]. The fibers used for mH2O2

(mitochondrial H2O2) were placed in ice-cold buffer Y (250 mM sucrose, 10 mM Tris/HCl,

20 mM Tris base, 10 mM KH2PO4, 2 mM MgCl2·6H2O and 0.5 mg/ml BSA).

Permeabilized fibers in buffer Z were rotated at 4°C until analysis (<100 min maximum).

Measurement of mO2, mH2O2 and mCa2+ in permeabilized cardiac myofibers

Mitochondrial measurements were made using the O2K Oxygraph system (Oroboros

Instruments) at 30°C. Measurements of mH2O2 and mCa2+ measurements were obtained

using a spectrofluorometer (Photon Technology Instruments), equipped with a thermo-

jacketed cuvette chamber. Mitochondrial oxygen consumption experiments were performed

in buffer Z. In mH2O2 measurements, buffer Y contained 10 μM Amplex Red (Invitrogen),

1 unit/ml horseradish peroxidase, 5 mM pyruvate, 2 mM malate, and SOD (25 U/mL);

mH2O2 emission was calculated as outlined previously [19].

Ex Vivo Assessment of Myocardial Contractile Function

Myocardial contractile function was determined ex vivo through isolated working mouse

heart perfusions, as described previously [21]. All hearts were perfused in the working mode

in a non-recirculating manner with a preload of 12.5 mmHg and an afterload of either 50

mm Hg (baseline) or 80 mm Hg (high). Standard Krebs-Henseleit buffer was supplemented

with 8 mM glucose, 0.4 mM oleate conjugated to 3% BSA (fraction V, fatty acid-free;

dialyzed), 0.05 mM L-carnitine, 0.13 mM glycerol, and 10 μUnit/ml insulin. Following

perfusion under baseline conditions (30 minutes), a workload challenge was performed,

wherein responsiveness to 1 μM epinephrine plus an elevated afterload of 80 mmHg was

assessed for 30 minutes. Measures of cardiac function (i.e., cardiac power, cardiac

efficiency, heart rate, developed pressure, and rate pressure product) were determined at 5-

minute intervals, as previously described [21]. At the end of the perfusion period, hearts

were snap-frozen in liquid nitrogen and stored at −80°C prior to analysis. Data are presented

as steady state values (i.e., the mean of the last two time points during a distinct perfusion

condition for each individual heart).

Mitochondrial isolation and calcium studies

Cardiac mitochondria were isolated from the left ventricle of hearts utilizing a modified

Chappell-Perry protocol adapted from Sloan et al. [22]. Briefly, hearts were excised and

immersed in 10 mL ice cold mitochondrial isolation medium [23] containing (in mM): 300

sucrose, 10 sodium-hepes and 0.2 EDTA. The left ventricle was isolated, weighed, and

rinsed in fresh MIM buffer. Hearts were minced finely and subjected to 2 min of digestion

using 0.25 mg trypsin, diluted in 2 mL of MIM (pH=7.2). Following digestion, 1.3 mg of

trypsin inhibitor was diluted into 2mL of MIM buffer+BSA (1 mg/mL) at pH=7.4. The

minced tissue was resuspended in 3 mL MIM buffer+BSA and homogenized with a Teflon®

Potter homogenizer. The heart homogenate was centrifuged at 600 g for 10 min, and the
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supernatant was then centrifuged at 8000 g for 15 min. The supernatant was discarded, and

the pellet re-suspended in 2 mL MIM buffer+BSA. This step was repeated one more time,

and the final pellet was stored on ice in ~75 μL MIM buffer. All steps were performed at

4°C and all instruments were chilled for 4°C prior to use. Mitochondrial protein content was

determined using a BCA protein assay. For mCa2+ measurements, buffer Y contained 300ug

of isolated mitochondria as determined by BCA, 5 μM Calcium Green 5-N (Invitrogen) with

either 5 mM pyruvate and 2 mM malate or 5mM succinate. At the start of mCa2+

experiments, with 10 μM EGTA added to chelate residual Ca2+ and to establish Fmin. Pulses

of 15 nmol of Ca2+ (CaCl2) were sequentially added and Ca2+ uptake was followed until

mPTP (mitochondrial permeability transition pore) opening, as described previously [24]. At

the end of the experiment, 1 mM CaCl2 was added to saturate the probe and establish Fmax.

Changes in free Ca2+ in the cuvette during mCa2+ uptake were then calculated using the

known Kd for Calcium Green 5-N and the equations established by Tsien [25] for

calculating free ion concentrations using ion-sensitive fluorophores. At the conclusion of all

experiments, fibers were rinsed in double-distilled water, freeze-dried for >2 h and weighed

on a micro-scale. The data are expressed as pmol·min−1·(mg of dry weight)−1 (for mH2O2)

or nmol·(mg of μg protein)−1 (for mCa2+).

Mitochondrial isolation for complex I/complex II functional studies

Mitochondria were isolated from mouse hearts by differential centrifugation [26,27].

Ventricles were minced in ice cold homogenization buffer (0.25M sucrose, 10mM Hepes,

pH 7.4, 1mM EDTA, 1mM DTT plus protease inhibitor cocktail (Roche) and phosphatase

inhibitor cocktail (Calbiochem). Minced tissue was then homogenized in Potter-Elvehjem

homogenizer for 6 passes then centrifuged at 600xg for 5 min to remove unbroken cells and

nuclei. The crude mitochondrial fraction was isolated from the supernatant by centrifugation

for 15 min at 12,000xg. The pellet was then resuspended in homogenization buffer, layered

over a 30% Percoll gradient, and centrifuged at 95,000xg for 30 min to separate

mitochondria from other membranes. The lower band was collected, washed 2 times to

remove Percoll, leaving a final mitochondrial fraction resuspended in homogenization buffer

and stored at −80°C.

Complex I and Complex II functional assays

Mitochondrial complex I and II activities were measured in HL1 cell lysates and both whole

heart homogenates and isolated heart mitochondria from MuRF1 Tg+ mice and WT control

mice using microplate assay kits purchased from Abcam (Mitosciences) according to the

manufacturer’s protocols. In each assay kit, the enzyme complex was immunocaptured

within the wells of the microplate. For all measurements, total protein was determined prior

to immunocapture and activity data was normalized per ug of total protein input. The

Complex I Microplate Assay Kit (ab109721) measures the activity of immunocaptured

mitochondrial Complex I by following the oxidation of nicotinamide adenine dinucleotide

(NADH) to NAD+ and the simultaneous reduction of a dye leading to increased absorbance

at 450 nm. In the Complex II Microplate Assay Kit (ab109908), the activity of

immunocaptured mitochondrial complex II is measured by following the reduction of

ubiquinone to ubiquinol and recording the associated decrease in absorbance at 600 nm.

Prior to measurement of complex I and complex II activity in HL1 cells, cells were
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transduced with adenovirus expressing CMV GFP-tagged myc-MURF1 or CMV GFP

control (n=6/condition) at MOI=30 for 24hrs. Cells were then collected by scraping and

low-speed centrifugation prior to processing according to the kit protocols. Whole heart

homogenates from WT and MuRF1 Tg+ mice (n=5/genotype) were homogenized in 0.5 mL

ice-cold PBS containing HALT protease/phosphatase inhibitors (Pierce). Prior to complex I

and II activity determination mitochondria were isolated from WT and MuRF1 Tg+ mouse

hearts (n=7 WT, n=5 Tg+) by differential centrifugation in buffer containing 0.25M sucrose,

10mM Hepes, pH 7.4, 1mM EDTA, 1mM DTT with protease inhibitors (Roche 11 697 498

001) and phosphatase inhibitor cocktail (Calbiochem Cat. # 524625).

Preparation of HL-1 mitochondria and cytosol and Western blotting

Cardiac cell lines HL-1 [28] and H9C2 (CRL1446, ATCC®, Manassas, VA) [29] were

plated in 15 cm dishes, transduced with Ad.MuRF1 or Ad.GFP, and whole cell lysate

prepared in lysis buffer (Cell Signaling, Cat#9803) including protease inhibitor (Roche,

Cat.#04 906 837 001) and beta-glycerol phosphate. C2C12 (ATCC, Manassas, VA, Cat#

CRL-1772) myoblasts were differentiated to myotubes as described by the manufacturer and

similarly transduced with Ad.MuRF1 and Ad.GFP and harvested. Mitochondria and cytosol

fractions were obtained using the Thermo Scientific Mitochondria Isolation Kit for Cultured

Cells (Cat#89874). Briefly, cells were homogenized on ice using a syringe with a 27g needle

(26 strokes), 800uL of Mitochondria Isolation Reagent C and 200uL Mitochondria Isolation

Reagent A were added, and the homogenate was centrifuged at 700g for 10 min at 4°C. The

mitochondria pellet was lysed following 10 min incubation in RIPA buffer (Sigma,

Cat#R0278) including protease inhibitor (Roche, Cat#04906837001) and beta-glycerol

phosphate. Twenty μg of lysate was resolved on a 4–12% Bis-Tris gel, transferred to PVDF

membrane, blocked in 5% nonfat milk/TBS-Tween, and incubated with primary antibodies

overnight at 4°C (using anti-c-Myc-Peroxidase antibody (1:5,000, Sigma, Cat#A5598), anti-

cytochrome c (1:1,000, Cell signaling, Cat#4272), anti-protein disulfide isomerase (1:1,000,

Cell Signaling, Cat#3501), and anti-GAPDH (1:1,000, Millipore, Cat#MAB374)). Anti-

Rabbit IgG-Peroxidase (1:10,000, Sigma, Cat#A9169) or anti-Mouse IgG-Peroxidase

(1:60,000, Sigma, Cat#A9917) were incubated for 1 hr at RT and developed using

Amersham ECLSelect (Cat#RPN 2235) for chemiluminescence detection.

Statistical analysis

A One Way ANOVA was performed to determine significance in work heart assays of

baseline and high workload conditions, followed by multiple comparison procedures (Holm-

Sidak) to determine significance between groups. A Student’s t-test was performed to

determine differences between experimental and control groups in each strain of mouse line

in all other experiments. Both One Way ANOVA and Student’s t-test analyses were

performed using Sigma Plot 11 (Systat Software, Inc., San Jose, CA). Statistical significance

was defined as p<0.05 unless otherwise noted.

Results

Recent studies have reported that MuRF1−/− hearts do not have a cardiac phenotype (wall

thickness and systolic function) different from their wildtype siblings by conscious
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echocardiography at <6 months of age, unless challenged with cardiac stresses such as

pressure overload-induced cardiac hypertrophy [17]. MuRF1 Tg+ mice with constitutively

increased cardiomyocyte MuRF1 have a non-progressive decrease in wall thickness (15–

20%) and mildly decreased fractional shortening % (25%), a measure of systolic, with

conscious echocardiography [2,8]; the MuRF1 Tg+ cardiac function is unimpaired function

by ex vivo Langendorff assays [16]. Neither phenotype is consistent with progressive

muscle wasting. To build upon these previous studies, we sequentially challenged these

mouse models to dynamic changes in workload using the physiologocially relevant working

heart perfusion model to determine for the first time the role of cardiac MuRF1 in both

cardiac performance and mitochondrial function.

MuRF1 activity is present in mitochondria fractions

In three different cardiac and skeletal muscle cell lines, we investigated the location of

MuRF1’s ubiquitin ligase activity using a MuRF1 adenovirus (and control GFP) construct as

previously described [30]. We identified MuRF1 activity in mitochondria, determined by

MuRF1 auto-ubiquitination in the HL-1 atrial cardiomyocyte-derived cell line (Figure 1A),

the H9C2 ventricular cardiomyocyte cell line (Figure 1B), and C2C12 skeletal muscle cell

line myotubes (Figure 1C). As a ubiquitin ligase, MuRF1’s importance to date has relied on

its ability to ubiquitinate substrates, so its interesting to note that MuRF1’s critical activity,

represented by auto-ubiquitination, was found primarily in the mitochondrial fraction in

each of these myocyte cells lines (Figure 1).

MuRF1−/− working hearts exhibit enhanced function in the working heart

Isolated working MuRF1−/− and MuRF1 Tg+ hearts were first assayed for their functional

characteristics ex vivo. MuRF1−/− hearts exhibited significantly increased cardiac power

and developed pressure at both baseline and high workload conditions (Figure 2A). At the

same time, sibling-matched wildtype control hearts exhibit a decreased cardiac power and

developed pressure with high workload. This enhanced contractility is amplified when the

amount of work per time (rate pressure product) in the MuRF1−/− hearts, being largest with

the high workload (Figure 2A). MuRF1−/− hearts maintain more cardiac efficiency, a

measure of output as a function of oxygen consumption, compared to wildtype in high

workload conditions, consistent with their enhanced function (Figure 2A). Recent studies

have identified that MuRF1−/− mice exhibit an increased cardiac capacity for aerobic

activity (voluntary running). In these studies, untrained MuRF1−/− mice ran farther and

faster than wild type controls mice, an advantage which was enhanced with subsequent

training [31]. MuRF1 Tg+ hearts, in contrast, exhibited significantly less cardiac function

than their wildtype counterparts. Specifically, MuRF1 Tg+ hearts had decreased cardiac

power and developed pressure at both baseline and high workload conditions (Figure 2B).

When heart rate is taken in to consideration, MuRF1 Tg+ rate pressure product was

significantly less than wildtype hearts at both baseline and high workload conditions. At

baseline workload, MuRF1 Tg+ hearts exhibited less cardiac efficiency, a change that was

not seen in the high workload (Figure 2B). Taken together, MuRF1 expression correlated

inversely with the contractile function of the heart, an effect that was exaggerated when

challenged with a high workload.
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Glucose and fatty acid oxidation in the working heart

MuRF1 has been reported to bind the pyruvate dehydrogenase complex (PDH) via pyruvate

dehydrogenase (lipoamide) beta and pyruvate dehydrogenase kinase, which regulates PDH

activity in yeast two hybrid studies [5]. Since PDH catalyzes the conversion of pyruvate to

acetyl-CoA and glucose oxidation, we investigated the role of MuRF1 in regulating glucose

oxidation in our MuRF1−/− and MuRF1 Tg+ models using a working heart assay. In the

present study, we identified that neither MuRF1 Tg+ hearts or MuRF1−/− hearts have any

differences in glucose oxidation in the working heart ex vivo both at baseline, or in response

to increased workload compared to sibling-matched WT controls (Figure 3A, top). While

MuRF1 Tg+ hearts did not significantly differ in their glucose oxidation in the working

heart ex vivo at baseline, glucose oxidation trended to be attenuated in the face of increased

workload compared to sibling WT controls, although not significantly (Figure 3B, top). The

oxidation of the long-chain fatty acid oleate generally did not differ between MuRF1−/−

and sibling WT mice (Figure 3A, lower left). Similarly, oleate oxidation by MuRF1 Tg+

hearts did not differ from wildtype controls (Figure 3B, lower left), even when normalized

for MVO2 consumption (Figure 3, lower left). Minor differences in oxygen consumption

could be seen in the working MuRF1 Tg+ hearts had both at baseline and after challenge

with a high workload (Figure 3, lower right).

MuRF1 Tg+ cardiac mitochondria have a substrate-depended decreased flux through the
Krebs cycle

Mitochondria from MuRF1−/− and MuRF1 cardiac-specific Tg+ mice were assayed at basal

and maximal ADP-stimulated rates of mO2 supported by pyruvate, malate, glutamate, and

succinate in permeabilized cardiac myofibers. While cardiac mitochondria from MuRF1−/−

mice did not differ from sibling-matched controls, MuRF1 Tg+ cardiac mitochondria

consumed significantly less O2 (Figure 4A). Importantly, no significant differences in the

respiratory control ratio, an indicator of mitochondrial coupling, were identified between

MuRF1−/−, MuRF1 Tg+, and their respective WT control mice. (Figure 4B). Basal and

maximal cardiac mitochondrial ADP-stimulated mO2 consumption supported by palmitoyl-

L-carnitine and malate did not differ in the MuRF1−/− and MuRF1 Tg+ and their respective

WT controls (Figure 4C), suggesting that MuRF1 expression does not affect fatty acid

oxidation at the level of the mitochondria. Previous studies have identified that an increased

sensitivity of the permeability transition pore, regulating Ca2+ uptake in the presence of Pi,

is related to the rate of electron flow through complex I in muscle [32]. Since we identified

significantly decreased oxygen consumption in MuRF1 Tg+ mitochondria when using

Complex I substrates (Figure 4A), we then challenged isolated mitochondria from MuRF1

Tg+ hearts with increasing exogenous Ca2+ to determine the mCa2+ retention capacity

before the opening of the mPTP (Figure 4D). Mitochondria from MuRF1 Tg+ hearts

demonstrated no differences in mCa2+ retention capacity (i.e. sensitivity or mPTP to Ca2+)

when supported by pyruvate + malate or succinate compared to WT controls, indicating that

MuRF1 does not play a role in the modulating cell death regulated by the mitochondrial

permeability transition apparatus.
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Mitochondria from MuRF1 Tg+ hearts generate significantly less ROS

We next determined the rate of mH2O2 emission as a surrogate for reactive oxygen species

formation from cardiac mitochondria using permeabilized myofibers in MuRF1−/− and

MuRF1 Tg+ mice. While MuRF1−/− hearts did not differ from sibling-matched controls,

surprisingly, MuRF1 Tg+ mitochondria supported by Pyruvate/Malate, Pyruvate/Malate/

Glutamate, and Pyruvate/Malate/Glutamate/Succinate had a 67.0%, 51.0%, and 68.4%

decrease in H2O2 emission compared to sibling-matched WT controls. This indicates a

significant reduction in the mitochondria’s ability to form reactive oxygen species (ROS) in

mice with increased cardiomyocyte MuRF1 expression (Figure 5A). When the JH2O2 is

normalized to the oxygen consumption rate in the presence of Pyruvate/Malate, Pyruvate/

Malate/Glutamate, and Pyruvate/Malate/Glutamate/Succinate (see Figure 4A), the MuRF1

Tg+ mitochondria JH2O2 (JH2O2/JO2, Figure 5B) is decreased, although no longer

significantly less than the wildtype controls. Several potential sites of superoxide and H2O2

production have been reported in the Krebs cycle and electron transport chain in the

mitochondria, including moieties on complex I [33] and complex III [34,35]. Recent studies

on skeletal muscle mitochondria have found that complex II can generate superoxide or

H2O2 [36], although complex II generation of significant ROS in vivo has mainly been

demonstrated with mutations in the succinate dehydrogenase complex and flavoprotein

subunit [37–39].

Complex I and II activity with increased MuRF1 expression

Using MuRF1 as bait, previous studies have identified that MuRF1 interacts with multiple

substrates related to energy metabolism and mitochondria experimentally [5]. In complex I,

NADH dehydrogenase (ubiquinone) and NADH-ubiquinone oxidoreductase were identified

and in complex II Ubiquinol-cytochrome c reductase core protein I was found. This, in

addition to the identification of reduced reactive oxygen species (ROS) production in the

MuRF1 Tg+ mitochondria led us to investigate mitochondrial complex I and complex II

activity in a cardiac-derived cell line, whole heart lysates, and isolated cardiac mitochondria.

Despite having activity in mitochondria and binding to specific complex I and II substrates,

no differences in complex I or complex II activity were identified in biochemical assays

(Figure 6A). Similarly, using whole cardiac ventricular lysates from MuRF1 Tg+ hearts, we

did not identify differences from WT control hearts in either complex I or complex II

activity (Figure 6B). Lastly, we isolated mitochondria from MuRF1 Tg+ hearts and assayed

complex I and complex II activity (Figure 6C). No changes from sibling WT control hearts

were seen. Despite the previous identification of MuRF1 substrates in complex I and

complex II (both implicated in ROS formation), increased MuRF1 expression did not affect

complex I or complex II activity either in vitro or in vivo.

A consistent and critical finding in these studies was that mitochondrial function from

MuRF1−/− hearts did not differ from WT hearts. We propose that this represents a

redundancy of MuRF1 with other MuRF family proteins. Evidence for this redundancy of

MuRF1 and MuRF2 in mitochondria may be seen in yeast two hybrid studies using p27

MuRF2 as bait (Table 1). We found that MuRF2 binds to muscle creatine kinase, aldolase

A, NADH dehydrogenase (ubiquinone) 1a, and Aldo-keto reductase family 7 (Table 1), in

addition to these redundant interacting proteins described earlier that MuRF1 interacts with
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[5], The redundancy in mitochondrial binding partners of MuRF1 and MuRF2 is consistent

with our present studies, which did not detect any differences in MuRF1−/− cardiac

mitochondrial function, but did detect differences when cardiac MuRF1 expression was

increased. We believe this illustrates the redundancy that exists between MuRF1 and other

MuRF family members, notably MuRF2, in the heart [40,41,5,7].

Initial studies yeast two hybrid assays using MuRF1 as bait identified binding a number of

binding partners with cellular activities throughout the cell, including pathways involved in

ATP/energy production [5]. These studies identified myofibrillar, substrates, in addition to

substrates involved in energy metabolism, mitochondria, and 10 of unknown (undescribed)

function [5]. However, the significance of MuRF1’s interactions with muscle creatine

kinase, Aldolase A, and NADH dehydrogenase (ubiquinone) 1a, for example, were

unknown [5]. Moreover, these initial studies demonstrated MuRF1’s redundant interactions

with muscle ring finger-2 (MuRF2) with respect to multiple sarcomeric proteins, troponin I

(TnI), troponin T (TnT), telethonin, titin, nebulin, myotilin, and myosin light chain 2

(MLC2) [5] (see Table 1). However, prior to this current study, the significance of both

MuRF1’s regulation of mitochondrial function and its potential redundancy had been

proven. Together, the lack of differences in MuRF1−/− heart mitochondrial function and

changes in MuRF1 Tg+ heart mitochondrial flux and ROS production are consistent with

MuRF1’s redundant regulation of cardiac mitochondrial function.

Discussion

MuRF1 has previously been shown to be a muscle-specific ubiquitin ligase involved in

muscle mass regulation presumably through it’s ability to target troponin I [6] and myosin

heavy chain [7] for proteasome-dependent degradation. However, recent studies have

extended MuRF1’s regulation of sarcomere degradation to include the regulation of signal

transduction, through interactions with cytoplasmic (cJun) [16] and nuclear transcription

factors (e.g. SRF and E2F1) [17,40] that are regulated by both proteasome dependent and

proteasome-independent (non-degradative) mechanisms, respectively. With MuRF1’s

expanding role in signaling transduction and recently metabolism through its regulation of

creatine kinase activity [8,42], we investigated MuRF1’s role in cardiac mitochondrial

function in vivo. We found significant decreases in mitochondrial flux and ROS production

in MuRF1 Tg+ hearts, but not MuRF1−/− hearts, illustrating MuRF1’s potential redundant

regulation of mitochondrial function.

While ubiquitin ligases have rarely been reported in mitochondria, proteomic studies suggest

that ubiquitin ligase activity in the heart is abundant. One recent proteomics study of the

heart identified that most ubiquitinated proteins are found in the mitochondria [9].

Specifically, of all the ubiquitinated proteins found in the heart, 38% of all the ubiquitinated

proteins identified were from mitochondria, contrast to the 27.3% from the cytosolic

compartment, 13.2% in the Golgi/SR/Vesicle, 9.1% in the nucleus (the remaining 12.4% are

of an unknown cellular localization) [9]. Previously, only two ubiquitin ligases have been

described in mitochondria, including MARCH5 and MULAN/MAPL [15]. These ubiquitin

ligases, incidentally identified in the heart as well, have been shown to regulate

mitochondrial dynamics in non-cardiac cells [43,10,44,45,12,46], as recently reviewed [15].
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Consistent with MuRF1’s role in mitochondria, most MuRF1 protein expression and activity

determined by auto-ubiquitination in cardiomyocytes, could be found in the mitochondrial

fraction of striated muscle cells, including cardiac-derived muscle cells transduced with

MuRF1 (Figure 1). While MuRF1 was present in the cytosolic fraction, most ubiquitin

ligase activity (auto-ubiquitination) could be seen in the mitochondrial fractions in the

cardiac-derived cells (Figure 1B). These findings are consistent with both MuRF1’s

previous interactions with mitochondrial proteins [5], and our present findings that MuRF1

regulates cardiomyocyte flux and ROS in MuRF1 Tg+ hearts. This makes MuRF1 the heart-

specific ubiquitin ligase to be described in the mitochondria, as well as its functional

consequences.

A key finding in this study is the remarkable reduction in reactive oxygen species

production in the MuRF1 cardiomyocyte-specific transgenic muscle fibers (Figure 1). ROS

production is a substantial cause of injury after an ischemia/reperfusion event [47]; thus,

MuRF1’s reduction in ROS production would be predicted to be cardioprotective. One

possible way that MuRF1 may be doing this is through its proposed association with

complex I through NADH dehydrogenase, identified previously in yeast two hybrid studies

as a MuRF1 interacting protein [5]. The significance of this association on electron transport

chain complex I and II function was investigated in the current study. Complex I serves as a

major source of ROS in the mitochondria. Therefore, we speculated that increased MuRF1

expression may target complex I for degradation, decreasing complex I dysfunction by

increased turnover, and; therefore, decrease ROS production. However, in vitro and in vivo

biochemical analysis revealed no functional difference (Figure 5). This implies that a

reduction in Krebs cycle flux could be the mechanism of decreased respiration in MuRF1

transgenic mice.

How MuRF1 may be targeted to the mitochondria is unknown. MuRF1 has been reported in

the cytosol, nucleus, and sarcomere; it does not contain an N-terminal mitochondrial

targeting sequence that would transport it to the mitochondrial matrix (e.g. H2N-Met-Leu-

Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-Phe-Lys-Pro-Ala-Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-

Tyr-Leu-Leu-) [6,48,38]. Nor is MuRF1 strongly predicted to localize to mitochondria itself

based on properties of proteins targeted to the nucleus (Mitoprot II, v1.101, probability of

export to mitochondria 0.0013–0.0018) [49]. This does not preclude that MuRF1 is not

found in the mitochondria. For example, the ubiquitin ligase MULAN is targeted to the

mitochondria but does not contain an N-terminal mitochondrial targeting sequence.

Interestingly, MULAN is targeted to the mitochondria by two novel transmembrane

domains just identified (named TMD1 and TMD2) that are necessary for MULAN to

translocate to the mitochondria [12]. The other ubiquitin ligase found to associate with

mitochondria, Parkin, mediate the process of “mitophagy”. Parkin is directed to damaged

mitochondria, where it interacts with phosphorylated PINK1 (with its own mitochondrial

targeting sequence); it subsequently ubiquitinates PINK1 to direct downstream

mitochondrial autophagy [50,51]. Both the MULAN and Parkin examples illustrate

mechanisms by which ubiquitin ligases are targeted to the mitochondria independent of N-

terminal mitochondrial targeting sequences. Given the paucity of ubiquitin ligases (zero)

identified in the MitoCarta inventory of mammalian mitochondrial genes [52] and the fact
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that most ubiquitinated proteins in the heart are of mitochondrial origin (38%)[9], it would

not be surprising that ubiquitin ligases end up in the mitochondria by novel mechanisms yet

to be identified, which differ from traditionally mitochondrial targeting sequences. Given

MuRF1’s wide array of substrate specificities, including as key regulators of metabolism

[8,53,54] and mitochondrial oxidative phosphorylation (NADH dehydrogenase, aka

ubiquinone, NADH ubiquinone oxidoreductase, and 3-hydroxyisobutyrate dehydrogenase),

including the mitochondrial ATP synthase beta-subunit involved in the regeneration of ATP

[5], MuRF1’s interaction of proteins targeted to the mitochondria is possible and warrants

further investigation. Taken in context of the current studies, the evidence presented that

MuRF1 activity is found in mitochondrial fractions is not conclusive evidence of MuRF1’s

localization. Further studies are needed to elucidate MuRF1’s localization to the

mitochondria and the mechanisms involved in light of the novel mechanisms found in the

other two ubiquitin ligases identified in mitochondria to date.

These studies identify the first ubiquitin ligase found in cardiomyocytes that are found in the

mitochondria and regulates flux through the Krebs cycle while also reducing ROS

generation. Interestingly, increased expression of MuRF1, but not deletion of MuRF1,

results in changes in ROS generation compared to WT controls. Since these effects are not

seen in the MuRF1−/− hearts, we hypothesized that MuRF1 and MuRF2 redundantly

regulated mitochondrial function. Consistent with this, yeast two hybrid using MuRF2 as

bait identified interacting mitochondrial proteins redundant with previous MuRF1 yeast two

hybrid substrates (Table 1). By reducing cardiomyocyte mitochondrial ROS production

capacity, increased MuRF1 expression may be an additional mechanism by which cardiac

MuRF1 is cardioprotective against ischemia/reperfusion injury both in vivo and ex vivo by

its regulation of complex I and II of the electron transport chain activity, the primary sources

of cardiac ROS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-standard abbreviations

ADP adenosine diphosphate

ATP adenosine triphosphate

α-MHC α-myosin heavy chain

JNK c-Jun N-terminal protein kinases

mCa2+ mitochondrial Ca2+

mH2O2 mitochondrial H2O2
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MITOL/MARCHV membrane-associated ring finger 5

mPTP mitochondrial permeability transition pore

ROS reactive oxygen species

MULAN mitochondrial ubiquitin ligase activator of NF-κB

MuRF1 Muscle Ring Finger-1

MuRF2 Muscle Ring Finger 2

KO knockout

MuRF3 muscle ring finger 3

NADH reduced form of nicotinamide adenine dinucleotide

PDH pyruvate dehydrogenase complex

SERCA sarcoplasmic/endoplasmic reticulum Ca2+-ATPase

Tg transgenic

WT wildtype

mO2 mitochondrial O2
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Figure 1. MuRF1 is found present in the mitochondria
Western analysis of MuRF1 expression in mitochondrial and cytosolic fractions in HL-1 and

H9C2 cells. Cells were transduced with Ad.mycMuRF1 or Ad.GFP and lysed to obtain

whole cell lysate or differential centrifugation to isolate mitochondria and cytosol fractions.

Immunoblot for A. MuRF1 (anti-myc), cytochrome c, GAPDH, and PDI illustrate MuRF1’s

presence in the mitochondria and auto-ubiquitination. These unique auto-ubiquitinated

forms of (myc)MuRF1 can be seen in the mitochondria and cytosol fractions in both the

HL-1 atrial cardiomyocyte derived, B. H9C2 ventricular cardiomyocyte derived cell line, as

well as the C. C2C12 undifferentiated myotubes. MuRF1 (anti-myc) and cytochrome c
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(mitochondria), illustrated at both early (left, 30 second exposure) and extended (right-

overnight) exposures.
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Figure 2. MuRF1−/− hearts exhibit increase power and developed pressure at baseline and high
workload conditions while MuRF1 Tg+ hearts have impaired
Functional characteristics of A. MuRF1−/− and B. MuRF1 Tg+ heart function ex vivo.

Hearts were isolated and immediate perfused in the working mode at basal (50 mm Hg) and

high (80 mm Hg) workloads. Cardiac power (a derivative of cardiac output), cardiac

efficiency (ratio of cardiac work and myocardial oxygen consumption), and rate pressure

product (heart rate*developed pressure) were calculated as previously described [21].

Values are expressed as mean ± SEM and represent 5–7 mice per group. Groups were

analyzed by a One Way ANOVA vs. sibling match wildtype controls at baseline and high

workload conditions. n.s.= not significant. p<0.05, unless otherwise noted in the panel.
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Figure 3. MuRF1 Tg+ hearts exhibits alterations in glucose oxidation and oxygen consumption
ex vivo
Metabolic (glucose and oleate oxidation) and oxygen consumption utilization of A.
MuRF1−/− and B. MuRF1 Tg+ hearts compared to strain matched wildtype controls. Hearts

were isolated and immediate perfused in the working mode at basal (50 mm Hg) and high

(80 mm Hg) workloads. Values are expressed as mean ± SEM and represent 5–7 mice per

group. Groups were analyzed by a One Way ANOVA vs. sibling match wildtype controls at

baseline and high workload conditions. n.s.= not significant. MVO2=myocardial oxygen

consumption. p<0.05, unless otherwise noted in the panel.
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Figure 4. Increasing MuRF1 expression inhibits Krebs cycle flux in permeabilized cardiac
muscle fibers
A. Quantified rates of pyruvate/malate-supported O2 consumption (JO2) in permeabilized

left ventricle myofibers from MuRF Tg+, MuRF −/−, and their respective WT controls. B.
No differences in mitochondrial coupling were detected as indicated by RCR, represents the

ratio of state 3 (phosphorylating) respiration to state 4 respiration. C. Quantified rates of

palmitoyl-L-carnitine -supported O2 consumption in permeabilized left ventricle myofibers

from MuRF Tg+, MuRF −/−, and their respective WT controls. D. Quantification of calcium

retention capacity in isolated cardiac mitochondria from MuRF Tg+, MuRF −/−, and their

respective WT controls. Data are expressed as mean ± SD and are representative of 3–5

mice per group. *p<0.05 by Student’s t-test vs. sibling-matched wildtype controls.
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Figure 5. Mitochondrial H2O2 emission is inhibited in permeabilized cardiac muscle fibers from
MuRF1 Tg+ hearts
A. Quantified rates of mH2O2 emission (JH2O2) and B. the JH2O2/JO2 ratio from

permeabilized muscle fibers obtained from MuRF Tg+, MuRF−/−, and their respective

controls. Data are expressed as mean ± SD and are representative of 3–5 mice per group.

*p<0.05 by Student’s t-test vs. sibling-matched wildtype controls.
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Figure 6. Mitochondrial Complex I/Complex II Activity with increased MuRF1 expression in
HL-1 cells, MuRF1 Tg+ cardiac ventricular lysates and MuRF1 Tg+ isolated cardiac
mitochondria
Microplate activity assays measuring mitochondrial complex I activity (oxidation of NADH

to NAD+) and complex II activity (reduction of ubiquinone to ubiquinol) in MuRF1

overexpressing HL-1 cells, MuRF1 Tg+ cardiac ventricular lysates and isolated cardiac

mitochondria from MuRF1 Tg+ mice demonstrate no significant difference in complex I or

complex II activity as a consequence of MuRF1 overexpression. (a) Mitochondrial complex

I and complex II activity in total protein lysates isolated from HL-1 cells transduced with

adenovirus expressing CMV GFP control or CMV GFP-tagged myc-MURF1. (b)
Mitochondrial complex I and complex II activity in whole cardiac ventricular lysates from

WT and MuRF1 Tg+ mice. (c) Mitochondrial complex I and complex II activity in

mitochondria isolated from WT and MuRF1 Tg+ mouse hearts. n.s.= not significant by

Student’s t-test vs. sibling-matched wildtype controls.
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Table 1

Comparison of new MuRF2 (p27) two-hybrid interacting proteins involved in energy metabolism compared to

previously published MuRF1 interacting protein results.

MuRF-2 Two-hybrid interaction results (previously unpublished) MuRF-1 Two-hybrid interaction results* (Accession Code)

Glycolysis

Aldolase A
Glycogen phosphorylase

Phosphofructokinase, muscle

Aldolase A (BC000367)
Pyruvate kinase (NM182471)

Krebs cycle

Malate dehydrogenase, mitochondrial (Mor1)
Succinate-CoA ligase, GDP-forming, alpha subunit (Thiokinase)

Isocitrate dehydrogenase
Pyruvate dehydrogenase (lipoamide) beta (BC000439)

Respiratory chain, mitochondrial

NADH dehydrogenase (ubiquinone)
NADH dehydrogenase (ubiquinone) (NM005005)
NADH-ubiquinone oxidoreductase (AF067186)

Ubiquinol-cytochrome c reductase core protein 1 (BC009586)

Fatty acid synthesis

Malonyl-CoA decarboxylase No substrates in this category identified

Fatty acid oxydation

Enoyl coenzyme A hydratase 1, peroxisomal No substrates in this category identified

ATP regeneration

Creatine kinase, muscle (CKM) Creatine kinase, muscle (CKM) (NM001824)
Adenylate kinase 1 (AK1) (NM000476)

Lactic Acid Cycle

No substrates in this category identified Pyruvate dehydrogenase kinase (NM002612)

NADH regeneration

No substrates in this category identified 3-Hydroxyisobutyrate dehydrogenase (BC032324)

Sarcomeric proteins

Myosin light chain (MLC)

Myosin light chain-2 (BC031006)
Telethonin (Tcap) (NM003673)

Myotilin (NM006790)
Titin (A-band region D-zone) (X90568)

Nebulin (X83957)
Nebulin-related anchoring protein (NM006175)

Troponin I (L21715)
Troponin T1 (BC010963)
Troponin T3 (BT019997)

*
Witt et a., J Mol Biol. 2005 Jul 22;350(4):713–22.
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