2,331 research outputs found

    Geometrical geodesy techniques in Goddard earth models

    Get PDF
    The method for combining geometrical data with satellite dynamical and gravimetry data for the solution of geopotential and station location parameters is discussed. Geometrical tracking data (simultaneous events) from the global network of BC-4 stations are currently being processed in a solution that will greatly enhance of geodetic world system of stations. Previously the stations in Goddard earth models have been derived only from dynamical tracking data. A linear regression model is formulated from combining the data, based upon the statistical technique of weighted least squares. Reduced normal equations, independent of satellite and instrumental parameters, are derived for the solution of the geodetic parameters. Exterior standards for the evaluation of the solution and for the scale of the earth's figure are discussed

    Optimum interface properties for metal matrix composites

    Get PDF
    Due to the thermal expansion coefficient mismatch (CTE) between the fiber and the matrix, high residual sresses exist in metal matrix composite systems upon cool down from processing temperature to room temperature. An interface material can be placed between the fiber and the matrix to reduce the high tensile residual stresses in the matrix. A computer program was written to minimize the residual stress in the matrix subject to the interface material properties. The decision variables are the interface modulus, thickness and thermal expansion coefficient. The properties of the interface material are optimized such that the average distortion energy in the matrix and the interface is minimized. As a result, the only active variable is the thermal expansion coefficient. The optimum modulus of the interface is always the minimum allowable value and the interface thickness is always the maximum allowable value, independent of the fiber/matrix system. The optimum interface thermal expansion coefficient is always between the values of the fiber and the matrix. Using this analysis, a survey of materials was conducted for use as fiber coatings in some specific composite systems

    Effect of parallactic refraction correction on station height determination

    Get PDF
    The effect of omitting the parallactic refraction correction for satellite optical observations in the determination of station coordinates is analyzed for a large satellite data distribution. A significant error effect is seen in station heights. A geodetic satellite data distribution of 23 close earth satellites, containing 30,000 optical observations obtained by 13 principal Baker-Nunn camera sites, is employed. This distribution was used in a preliminary Goddard Earth Model (GEM 1) for the determination of the gravity field of the earth and geocentric tracking station locations. The parallactic refraction correction is modeled as an error on the above satellite data and a least squares adjustment for station locations is obtained for each of the 13 Baker-Nunn sites. Results show an average station height shift of +8 meters with a dispersion of plus or minus 0.7 meters for individual sites. Station latitude and longitude shifts amounted to less than a meter. Similar results are obtained from a theoretical method employing a probability distribution for the satellite optical observations

    Commensurate Nb2Zr5O15: Accessible Within the Field Nb2ZrxO2x+5 After All

    Get PDF
    Doped niobium zirconium oxides are applied in field-effect transistors and as special-purpose coatings. Whereas their material properties are sufficiently known, their crystal structures remain widely uncharacterized. Herein, we report on the comparably mild sol–gel synthesis of Nb2Zr5O15 and the elucidation of its commensurately modulated structure via neutron diffraction. We describe the structure using the most appropriate superspace as well as the convenient supercell approach. It is part of an α-PbO2-homeotypic field with the formula Nb2ZrxO2x+5, which has previously been reported only for x ≥ 5.1, and is closely related to the structure of Hf3Ta2O11. The results, supported by X-ray diffraction and additional synthesis experiments, are contextualized within the existing literature. Via the sol–gel route, metastable Nb–Zr–O compounds and their heavier congeners are accessible that shed light on possible structures of these commercially utilized materials.DFG, 198634447, SPP 1613: Regenerativ erzeugte Brennstoffe durch lichtgetriebene Wasserspaltung: Aufklärung der Elementarprozesse und Umsetzungsperspektiven auf technologische KonzepteTU Berlin, Open-Access-Mittel - 201

    Evaluation of the Goddard range and range rate system at Rosman by intercomparison with GEOS 1 long-arc orbital solutions

    Get PDF
    Evaluation of Goddard range and range rate system at Rosman by intercomparison with GEOS 1 long-arc orbital solution

    Gravity model comparison using Geos-1 long arc orbital solutions

    Get PDF
    Gravity model comparison using Geos-1 long arc orbital solution

    Sea surface determination from space: The GSFC geoid

    Get PDF
    The determination of the sea surface/geoid and its relative variation were investigated and results of the altimeter experiment on Skylab to test the geoid are discussed. The spaceborne altimeter on Skylab revealed that the sea surface of the world's oceans can be measured with an accuracy in the meter range. Surface variations are discussed as they relate to those computed from satellite orbital dynamics and ground based gravity data. The GSFC geoid was constructed from about 400,000 satellite tracking data (range, range rate, angles) and about 20,000 ground gravity observations. One of the last experiments on Skylab was to measure and/or test this geoid over almost one orbit. It was found that the computed water surface deviates between 5 to 20 m from the measured one. Further outlined are the influence of orbital errors on the sea surface, and numerical examples are given based upon real tracking data. Orbital height error estimates were computed for geodetic type satellites and are found to be in the order of 0.2 to 5 meters

    Improvement in the geopotential derived from satellite and surface data (GEM 7 and 8)

    Get PDF
    A refinement was obtained in the earth's gravitational field using satellite and surface data. In addition to a more complete treatment of data previously employed on 27 satellites, the new satellite solution (Goddard Earth Model 7) includes 64,000 laser measurements taken on 7 satellites during the international satellite geodesy experiment (ISAGEX) program. The GEM 7, containing 400 harmonic terms, is complete through degree and order 16. The companion solution GEM 8 combines the same satellite data as in GEM 7 with surface gravimetry over 39% of the earth. The GEM 8 is complete to degree and order 25. Extensive tests on data independent of the solution show that the undulation of the geoidal surface computed by GEM 7 has an accuracy of about 3m (rms). The overall accuracy of the geoid estimated by GEM 8 is estimated to be about 4-1/4m (rms), an improvement of almost 1m over previous solutions

    A refined gravity model from Lageos (GEM-L2)

    Get PDF
    For abstract for A83-1354
    • …
    corecore