GRAVITY MODEL COMPARISON

USING GEOS-I LONG ARC
ORBITAL SOLUTIONS

Francis J. Lerch
 James G. Marsh
 Mission Trajectory Determination Branch Mission and Trajectory Analysis Division Tracking and Data Systems Directorate

Brian O'Neill
Wolf Research and Development Corporation Applied Sciences Department College Park, Maryland

December 1967

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

GRAVITY MODEL COMPARISON

USING GEOS-I LONG ARC

ORBITAL SOLUTIONS

Francis J. Lerch
James G. Marsh
Mission Trajectory Determination Branch Mission and Trajectory Analysis Division
Tracking and Data Systems Directorate

Brian O'Neill
Wolf Research and Development Corporation
Applied Sciences Department
College Park, Maryland

SUMMARY

Satellite tracking data has been analyzed using three different sets of coefficients in the mathematical model that describes the earth's gravitational field. The results were not intended to be used as a definitive evaluation of the different coefficients but as an assessment of the effects that different sets of coefficients, station coordinates, and earth parameters that have been published, have on orbital geodetic results.

Orbital solutions were estimated from optical tracking data from the GEOS-I satellite, taken by five major geodetic optical tracking networks. The networks and camera types consisted of the SAO Baker-Nunn, GSFC STADAN and SPEOPT MOTS $40^{\prime \prime}$ and $24^{\prime \prime}$, USAF PC-1000, and the US C\&GS BC-4. The three sets of gravity coefficients used were the SAO M-1 set (modified by the GEOS-I resonant harmonics), APL 3.5 set, and the NWL 5E-6 set. The semimajor axis, gravitational constant, and flattening consistent with each set of coefficients were also used. The station coordinates used were referenced to the SAO C-5 standard earth as no other complete set of optical station coordinates were available.

Several long arc orbital analyses were completed using each set of coefficients and the results were compared. Orbits were fitted to two overlapping
data sets; the arc lengths of these orbits were $5-1 / 4$ days and 1 day. The orbital solutions obtained with each set of coefficients were compared. Furthermore, the trajectory differences were computed, and were resolved into radial, cross track and along track components. The along track differences were as great as 400 meters for the $5-1 / 4$ day arc and 200 meters for the 1 day arc.

The range measurements of the Goddard Range and Range Rate (GRARR) S-Band Tracking System at Rosman were evaluated for 15 passes recorded during the first week in January 1966. The actual measurements were compared with values computed from the optical orbital solutions previously mentioned. The residual differences between the observed and computed ranges were analyzed for zero set range bias errors, timing errors, and random errors. The error estimates obtained from the orbital solutions determined using the SAO M-1 gravitational coefficients displayed a much greater degree of consistency from pass to pass. Also, the error estimates obtained from the $5-1 / 4$ day arc were in good agreement with those obtained from the 1 day arc when the SAO M-1 coefficients were used but agreement was generally poor when the reference orbits were determined using the NWL 5E-6 and APL 3.5 gravitational coefficients.

Two estimates of the coordinates for the Goddard Range and Range Rate station in Tananarive, Madagascar were obtained from independent data sets using each set of coefficients. Only the SAO M-1 set produced two estimates that were consistent; they differed by only 5 meters.

These comparisons serve to reinforce what was intuitively obvious - that for long arc geodetic work, the most complete set of gravity coefficients together with consistent station coordinates should be used.

TABLE OF CONTENTS
Page
SUMMARY iii
1.0 INTRODUCTION 1
2.0 DESCRIPTION OF THE EARTH'S GRAVITATIONAL FIELD.. 5
3.0 DIFFERENCES IN ORBITAL SOLUTIONS 7
4.0 TRAJECTORY DIFFERENCES 13
5.0 EVALUATION OF THE ROSMAN GRARR RAÑGE ACCURACY. 13
6.0 ESTIMATION OF COORDINATES FOR THE GRARR MADGAR SITE 31
7.0 REFERENCES 31

APPENDICES

Page
A FORCE MODELS USED IN THE NONAME ORBIT DETERMINATION SYSTEM A-1
B PREPROCESSING OF OPTICAL OBSERVATIONS B-1
C TRACKING STATION COORDINATES C-1
LIST OF ILLUSTRATIONS
Figure Page
1 Right Ascension Residuals from 1 Day Arc 9
2 Declination Residuals from 1 Day Arc 10

LIST OF ILLUSTRATIONS (Continued)

Figure Page
3 Right Ascension Residuals from 5-1/4 Day Arc 11
4 Declination Residuals from 5-1/4 Day Arc 12
5 Differences Between Trajectories Obtained from SAO M-1 and APL 3.5 Gravity Models - 1 Day Arc 14
6 Differences Between Trajectories Obtained from SAO M-1 and NWL 5E-6 Gravity Models - 1 Day Arc 16
7 Differences Between Trajectories Obtained from SAO M-1 and APL 3.5 Gravity Models - 5-1/4 Day Arc 18
8 Differences Between Trajectories Obtained from SAO M-1 and NWL 5E-6 Gravity Models - 5-1/4 Day Arc 24
9 Estimated Coordinates for MADGAR 38
LIST OF TABLES
Table Page
I Parameters for the Earth's Ellipsoid 2
II Harmonic Coefficients (Normalized) 2
III Summary of Optical Measurements by Station 8
IV Root Mean Squares about the Orbital Solution 13
V Summary of GRARR Passes at Rosman Occurring During the 5-1/4 Day Optical Orbital Arc 30
VI Summary of Rosman Zero Set Range Bias Estimates 32
VII Summary of Rosman Timing Error Estimates 33

LIST OF TABLES (Continued)

Table Page
VIII Summary of Random Error Estimates 34
IX Summary of Optical Data by Station for July 9, 10, and 11, 1966. 35
X Summary of Optical and GRARR Data by Station for November 28 and 29, 1965 36
XI Estimated Coordinates for MADGAR 37

LIST OF ABBREVIATIONS

APL	Applied Physics Laboratory of Johns Hopkins University
GSFC	Goddard Space Flight Center
MOTS	Minitrack Optical Tracking System
NWL	Naval Weapons Laboratory
SAO	Smithsonian Astrophysical Observatory
SPEOPT	Special Opiical Tracking System
STADAN	Satellite Tracking and Data Acquisition Network
USAF	United States Air Force
USC\&GS	United States Coast and Geodetic Survey

GRAVITY MODEL COMPARISON
 USING GEOS-I LONG ARC
 ORBITAL SOLUTIONS

1.0 INTRODUCTION

This report presents results and comparisons that have been obtained from the reduction of satellite tracking data using three different sets of coefficients in the mathematical model that describes the earth's gravitational field. These comparisons were not intended as an evaluation of the coefficients but as an assessment of the effects of using the different sets in order to choose the most suitable available set of gravity coefficients and station coordinates for long arc (greater than 6 revolutions) geodetic purposes.

These results were obtained using the orbit determination program NONAME (Reference 1), and the orbital solutions were estimated from optical tracking data taken from the GEOS-I satellite. The NONAME program uses a mathematical function based on Legendre polynomials to approximate the earth's gravitational field (Appendix A). Several sets of coefficients for these polynomials have been published; three of these sets were used for this work; they are:

1. The SAO M-1 Set. Modified by the GEOS-I Resonant Harmonics ($\mathrm{C}_{13,12}$, $\mathrm{C}_{14,12}, \mathrm{C}_{15,12}, \mathrm{~S}_{13,12}, \mathrm{~S}_{14,12}, \mathrm{~S}_{15,12}$) (Reference 2), (Reference 7).
2. The APL 3.5 Set (Reference 3).
3. The NWL 5E-6 Set (Reference 4).

These are presented in Table II.
For the purposes of these comparisons, the earth's semi-major axis, gravitational constant, and flattening coefficient that are consistent with each set of coefficients were used. These are summarized in Table I. The station coordinates were unchanged and were referenced to the SAO C-5 standard earth (Appendix C), since no other complete set of coordinates for the optical tracking stations was available.

The use of only the one set of station coordinates prevents these results being used as any sort of definitive evaluation of these sets of gravity coefficients. It should be noted, however, that the ellipsoids defined by the parameters in Table I are very similar; thus the station coordinates, if they are fairly

Table I
Parameters for the Earth's Ellipsoid

Parameter	SAO Model	APL 3.5	NWL $5 \mathrm{E}-6$
Gravitational Constant $\left(\mathrm{km}^{3} / \mathrm{sec}^{2}\right)$	3.986032×10^{5}	3.986075×10^{5}	3.9860542×10^{5}
Semi-Major Axis (km)	6378.165	6378.166	6378.165
Flattening	$\frac{1 .}{298.25}$	$\frac{1 .}{298.30}$	$\frac{1 .}{298.25}$

Table II
Harmonic Coefficients (Normalized)

n	m	SAO M1		APL 3.5		NWL $5 \mathrm{E}-6$	
		$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$
2	0	-484.1735		-484.198		-484.194	
2	1					0.016	0.062
2	2	2.379	-1.351	2.381	-1.198	2.446	-1.519
3	0						
3	1	1.936	0.266	1.84	0.215	2.148	0.274
3	2	0.734	-0.538	1.219	-0.6791	0.978	-0.906
3	3	0.561	1.620	0.6609	0.9795	0.585	1.625
4	0	0.5497					
4	1	-0.572	-0.469	-0.5624	-0.4403	-0.495	-0.575
4	2	0.330	0.661	-0.4179	0.4438	0.274	0.671

Table II (Continued)

n	m	SAO M 1		APL 3.5		$\mathrm{NWL} 5 \mathrm{E}-6$	
		$\overline{\mathrm{~S}} \times 10^{6}$	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$	
4	3	0.851	-0.190	0.8464	0.007062	1.030	-0.247
4	4	-0.053	0.230	-0.2106	0.1898	-0.413	0.336
5	0	0.0633		0.084		0.045	
5	1	-0.079	-0.103	0.1370	-0.1669	0.032	-0.119
5	2	0.631	-0.232	0.2684	-0.3379	0.637	-0.328
5	3	-0.520	0.007	0.09131	0.1035	-0.389	-0.124
5	4	-0.265	0.064	-0.4884	-0.260	-0.549	0.148
5	5	0.156	-0.592	-0.03358	-0.6686	0.215	-0.594
6	0	-0.1792		-0.103			
6	1	-0.047	-0.027	-0.0002093	0.1009	-0.085	0.192
6	2	0.069	-0.366	-0.1610	-0.1555	0.129	-0.457
6	3	-0.054	0.031	0.5303	0.05111	-0.020	-0.134
6	4	-0.044	-0.518	-0.3069	-0.5087	-0.193	-0.316
6	5	-0.313	-0.458	-0.18	-0.5091	-0.093	-0.786
6	6	-0.040	-0.155	0.01434	-0.2316	-0.324	-01360
7	0	-0.0860			0.153		
7	1	0.197	0.156	0.1261	0.09355	0.331	0.083
7	2	0.364	0.163	0.4586	0.05998	0.350	-0.195
7	3	0.250	0.018	0.3938	-0.2067	0.323	0.045
7	4	-0.152	-0.102	-0.1368	0.0004798	-0.467	-0.244
7	5	0.076	0.054	-0.05682	-0.1871	0.055	0.021
7	6	-0.328	0.063	-0.4552	0.758	-0.477	-0.244
7	0.055	0.096	0.08840	-0.1443			

Table II (Continued)

n	m	$\mathrm{SAO} \mathrm{M1}$		APL 3.5		$\mathrm{NWL} 5 \mathrm{E}-6$	
		$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$
8	0	0.0655		0.170			
8	1	-0.075	0.065	-0.1481	-0.04843		
8	2	0.026	0.039	0.09472	-0.03764		
8	3	-0.037	0.004	-0.05497	0.2168		
8	4	-0.212	-0.012	-0.06901	0.03761		
8	5	-0.053	0.118	0.08040	-0.002495		
8	6	-0.017	0.318	-0.02193	0.6658		
8	7	-0.0087	0.031	0.1697	-0.07009		
8	8	-0.248	0.102	-0.1457	0.09424		
9	0	0.0122		0.041			
9	1	0.117	0.012				
10	00	0.0118					
10	01	0.105	-0.126				
10	02	-0.105	-0.042				
10	03	-0.065	0.030				
10	04	-0.074	-0.111				
11	00	-0.0630					
11	01	-0.053	0.015				
12	00	0.0714					
12	01	-0.163	-0.071				

Table II (Continued)

n	m	SAO M1		APL 3.5		NWL 5 E-6	
	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{~S}} \times 10^{6}$	
13	00	0.0219					
13	12	-0.06769	0.06245				
13	13	-0.059	0.077	-0.4689	0.04748	-0.03	0.11
14	00	-0.0332					
14	01	-0.015	0.0053				
14	11	0.0002	-0.0001				
14	12	0.00261	-0.02457				
14	14	-0.014	-0.003	-0.06368	-0.037		
15	09	-0.0009	-0.0018				
15	12	-0.07473	-0.01026				
15	13	-0.058	-0.046				
15	14	0.0043	-0.0211	0.00087843	-0.0101	0.01	-0.03

accurately determined with reference to the center of mass, as the SAO C-5 coordinates are generally accepted to be, should not introduce any large differences in the results.

Several long arc analyses were completed using each set of coefficients in turn, and the results have been compared; these are discussed in some detail in Sections 3.0-6.0.

2.0 DESCRIPTION OF THE EARTH'S GRAVITATIONAL FIELD

The earth's geopotential can be approximated by the following mathematical model:

$$
\begin{equation*}
\mathrm{U}=\frac{\mathrm{GM}}{\mathrm{r}}\left\{1+\sum_{\mathrm{n}=2}^{\mathrm{k}} \sum_{\mathrm{m}=0}^{\mathrm{n}}\left(\frac{a}{\mathrm{r}}\right)^{\mathrm{n}} \mathrm{p}_{\mathrm{n}}^{\mathrm{m}}(\sin \phi)\left[\mathrm{C}_{\mathrm{nm}} \cos \mathrm{~m} \lambda+\mathrm{S}_{\mathrm{nm}} \sin \mathrm{~m} \lambda\right]\right\} \tag{1}
\end{equation*}
$$

where
G is the universal gravitational constant,
M is the mass of the earth,
r is the geocentric satellite distance,
a is the earth's mean equatorial radius,
ϕ is the sub-satellite geocentric latitude,
λ is the sub-satellite east longitude,
$p_{n}^{m}(\sin \phi)$ are the associated Legendre polynomials of degree n and order m, and
$\mathrm{C}_{\mathrm{nm}}, \mathrm{S}_{\mathrm{nm}}$ are the denormalized gravitational coefficients.
The denormalized gravitational coefficients are related to the normalized coefficients ($\overrightarrow{\mathrm{C}}_{\mathrm{nm}}, \overline{\mathrm{S}}_{\mathrm{nm}}$) as indicated below:

$$
\begin{aligned}
& C(n, m)=[(n-m)!(2 n+1) K /(n+m)!]^{1 / 2} \bar{C}(n, m) \\
& S(n, m)=[(n-m)!(2 n+1) K /(n+m)!]^{1 / 2} \bar{S}(n, m)
\end{aligned}
$$

where,
$\mathrm{K}=1$ when $\mathrm{m}=0$
$K=2$ when $m \neq 0$

The geopotential formulated in this manner can be converted into gravitational accelerations in inertial coordinates (x, y, z) as follows:

$$
\ddot{\mathbf{x}}_{\oplus}=\frac{\partial \mathbf{u}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{x}}+\frac{\partial \mathbf{u}}{\partial \phi} \frac{\partial \phi}{\partial \mathbf{x}}+\frac{\partial \mathbf{u}}{\partial \lambda} \frac{\partial \lambda}{\partial \mathbf{u}}
$$

where the subscript " o " denotes accelerations due to the earth's gravitational field. Similar expressions hold for $\ddot{\mathrm{y}}_{\oplus}$ and \ddot{z}_{\oplus}. The NONAME program uses a model in this form to compute the accelerations due to the earth's gravitational field.

The three different sets of harmonic coefficients (normalized) and associated earth parameters used in this analysis are shown in Tables I and II. The SAO M-1 is the largest set with a total of 122 coefficients; the APL 3.5 set has 84 coefficients and the NWL 5E-6 set has 64 . Of these three sets, only the SAO M-1 set has GEOS-I resonant terms (harmonics of order 12).

The SAO M-1 set was determined using optical observations from a number of satellites, and the other two sets were determined from Tranet Doppler observations, again from a number of satellites.

3.0 DIFFERENCES IN ORBITAL SOLUTIONS

Orbits were fitted to two data sets from the first week in January 1966, and the arc lengths of these orbits were $5-1 / 4$ days and 1 day. The $5-1 / 4$ day arc covered the period from 01 hrs . GMT on December 31, 1965 to 06 hrs ., January 5,1966 , and the data set consisted of 1057 optical observations.* The 1 day arc covered the period from $06 \mathrm{hrs}$. . January 2,1966 , to $08 \mathrm{hrs}$. , January $3,1966$. This data was a subset of the $5-1 / 4$ day arc data set and consisted of 444 optical observations. These data sets are summarized in Table III.

The root mean squares of the observations about the orbital solutions were computed and these are shown in Table IV. The r.m.s. values were lower for the orbits fitted using the SAO M-1 set for both arcs. The differences between the observed measurements and values computed from the orbital solutions were computed and plotted on histograms; these are shown in Figures 1-4. The right ascension residuals shown in the Figures have been multiplied by the cosine of the corresponding declination measurement to account for the degradation of the measurements recorded when the declination value was large. These Figures clearly indicate that the orbital solutions obtained with the SAO M-1 set of coefficients fit the data sets better than the other solutions. This is especially true

[^0]Table III
Summary of Optical Measurements By Station

Network	Station	Camera Type	No. of Observations	
			5-1/4 Day Arc	1 Day Arc
SAO	1ORGAN	Baker-Nunn	2	
	1JUPTR	"	26	26
	1NATOL	"	8	2
	OSLONR	"	4	
	AUSBAK	"	4	
	1SHRAZ	"	2	2
	1SPAIN	"	6	
	1TOKYO	"	12	4
	1VILDO	"	2	
	1MAUIO	"	2	
	AGASSI	Geodetic 36"	10	
	Total:		78	34
SPEOPT	1COLBA	MOTS $40^{\prime \prime}$	164	71
	1JUM40	"	22	16
	1BERMD	"	84	36
	1PURI0	"	14	
	1DENVR	"	70	14
	1JUM24	MOTS 24"	26	24
	Total:		380	158
STADAN	1FTMYR	MOTS 40'	82	54
	1BPOIN	"	53	
	1GFORK	"	26	9
	1MOJAV	"	25	25
	Total:		186	91
USAF	HUNTER	PC-1000	59	47
	SWANIS	"	14	14
	GRDTRK	"	7	
	ANTIGA	"	26	
	SEMMES	"	60	36
	CURACO	"	40	26
	HOMEST	"	94	24
	JUPRAF	"	17	17
	BEDFRD	"	22	
	ABERDN	"	74	
	Total:		413	164
Total of All Observations			1,057	444

Figure 1. Right Ascension Residuals from 1 Day Arc

Figure 2. Declination Residuals from 1 Day Arc

Figure 3. Right Ascension Residuals from 5 1/4 Day Arc

Figure 4. Dec:lination Residuals from 5 1/4 Day Arc

Table IV
Root Mean Squares About The Orbital Solution

Arc Length	R.M.S. of Fit (Secs. of Arc)		
	SAO M-1	APL 3.5	NWL $5 \mathrm{E}-6$
$5-1 / 4$ day	3.08	11.14	11.01
1 day	2.33	2.50	4.54

for the $5-1 / 4$ day are (Figures $3-4$) where the distributions of the right ascension and declination residuals for the APL 3.5 and NWL $5 \mathrm{E}-6$ soiutions are obviously non normal.

4.0 TRAJECTORY DIFFERENCES

Satellite position differences were computed at five minute intervals using the orbital solution obtained from the SAO M-1 coefficients as a standard for comparing the solutions obtained for the same data set when the APL 3.5 and NWL 5E-6 gravitational coefficients were used. These position differences were resolved into along track, cross track and radial components and are shown in Figures 5-8.

The along track differences were the largest. They were as large as 400 meters for the $5-1 / 4$ day arc and 200 meters for the 1 day arc. The cross track and radial differences were approximately the same order of magnitude and were as large as 100 meters for the $5-1 / 4$ day arc and 50 meters for the 1 day arc. The differences have a period approximately equal to the period of the satellite (2 hrs), and, in addition, the along track differences have some other long period associated with them. The periods of the along track, cross track, and radial differences are not in phase, and in general, the minima occur where there is good data coverage; this is shown by the solid blocks in the figures.

5.0 EVALUATION OF THE ROSMAN GRARR RANGE ACCURACY

The range measurements of the Goddard Range and Range Rate (GRARR) S Band Tracking System at Rosman, North Carolina, were evaluated by comparing the actual measurements with values computed from the optical reference orbits (Reference 5). The 5-1/4 day arc and the 1 day arc discussed in Section 3.0 were

Figure 5. Differences Between Trajectories Obtained from SAO M-I and APL 3.5 Gravity Models - 1 Day Arc

Figure 5. Differences Between Trajectories Obtained from SAO M-1 and APL 3.5 Grovity Models - 1 Day Arc (Continued)

Figure 6. Differences Between Trajectories Obtained from SAO M-1 and NWL 5E-6 Gravity Models - 1 Day Arc

Figure 6. Differences Between Trajectories Obtained from SAO M-1 and NWL 5E-6 Gravity Models - 1 Day Arc (Continued)

.. CROSS TRACK DIFFERENCE
..... ALONG TRACK DIFFERENCE
-- RADIAL DIFFERENCE

- data coverage

Figure 7. Differences Between Trajectories Obtained from SAO M-1 and APL 3.5 Gravity Models - $51 / 4$ Day Arc

Figure 7. Differences Between Trajectories Obtained from SAO M-1 and APL 3.5 Gravity Models - 5 1/4 Day Arc (Continued)
\ldots CROSS TRACK DIFFERENCE
$\ldots \ldots$ ALONG TRACK DIFFERENCE
\ldots RADIAL DIFFERENCE
DATA COVERAGE
HJOd WOY Sy Sinoh

位
\square
标

Figure 8. Differences Between Trajectories Obtained from SAO M-I and NWL 5E-6 Gravity Models - $51 / 4$ Day Arc

 Figure 8. Differences Between Trajectories Obtained from SAO M-1 and NWL 5E-6 Gravity Models - $51 / 4$ Day Arc (Continued)

Figure 8. Differences Between Trajectories Obtained from SAO M-1 and NWL 5E-6 Gravity Models - 5 1/4 Day Arc (Continued)

[^1]
Figure 8．Differences Between Trajectories Obtained from SAO M－1 and NWL 5E－6 Gravity Models－ $51 / 4$ Day Arc（Continued） －．．．．．ALOSS TRACK DIFFERENCE
．．．．．ALOACK DIFFERENCE
－－RADIAL DIFFERENCE
DATA COVERAGE －．．．．．ALOSS TRACK DIFFERENCE
．．．．．ALOACK DIFFERENCE
－－RADIAL DIFFERENCE
DATA COVERAGE －．．．．．ALOSS TRACK DIFFERENCE
．．．．．ALOACK DIFFERENCE
－－RADIAL DIFFERENCE
DATA COVERAGE －．．．．．ALOSS TRACK DIFFERENCE
．．．．．ALOACK DIFFERENCE
－－RADIAL DIFFERENCE
DATA COVERAGE －．．．．．ALOSS TRACK DIFFERENCE
．．．．．ALOACK DIFFERENCE
－－RADIAL DIFFERENCE
DATA COVERAGE dota
used as the reference orbits. A summary of the station pass times, simultaneous optical coverage and maximum elevation angles for 15 GRARR passes recorded at Rosman during the 5-1/4 day optical arc is presented in Table V. It should be noted that a large percentage of the optical data used in the determination of the reference orbital solutions was recorded by tracking stations located on or near

Table V
Summary of GRARR Passes At Rosman Occurring During The 5-1/4 Day Optical Orbital Arc

Pass No.	Transponder Channel*	Date	Time	No. of Obs. in Pass		Max. Elevation Angle
				$\mathrm{R} / \dot{\mathrm{R}}$	Optical	
652	A	12/31/65	06^{H}	18	18	31.3°
653	A	12/31/65	$08^{\text {H }}$	28	30	$65.4{ }^{\circ}$
664	A	1/1/66	06^{H}	28	78	$36.6{ }^{\circ}$
665	A	1/1/66	$08^{\text {H }}$	32	95	$51.8{ }^{\circ}$
673	A	1/1/66	23^{H}	34	0	$53.5{ }^{\circ}$
676	A	1/2/66	$06^{\text {H }}$	32	106	43.3°
677	A	1/2/66	08^{H}	28	138	40.2°
685	A	1/2/66	23^{H}	34	10	46.5°
688	A	1/3/66	$06^{\text {H }}$	30	101	52.2°
689	A	1/3/66	08^{H}	14	79	30.1°
697	A	1/3/66	23^{H}	44	0	40.8°
700	C	1/4/66	$06^{\text {H }}$	36	100	62.7°
708	C	1/4/66	21^{H}	48	0	84.2°
709	C	1/4/66	23^{H}	42	14	$35.8{ }^{\circ}$
712	A	1/5/66	$06^{\text {H }}$	36	66	76.6°

[^2]the North American Continent (Table III) and also most of the Rosman GRARR passes had simultaneous optical data coverage.

For each GRARR pass over Rosman, zero set range bias errors, timing errors, and random errors were estimated from the residual differences between the observed and calculated ranges; these are summarized in Tables VIVIII. The 12 A channel passes had a mean zero set error of -10 meters with a standard deviation of 8.8 meters, and a timing error of -2.4 milliseconds with a standard deviation of 2.4 milliseconds when compared with the orbital solution determined with the SAO M-1 gravitational coefficients; a mean zero set error of -33.7 meters with a standard deviation of 21.0 meters, and a timing error of -0.8 milliseconds with a standard deviation of 9.8 milliseconds when compared with the orbital solution determined with the NWL 5E-6 coefficients; and a mean zero set crror of -34.6 meters with a standard deviation of 30.7 meters, and a timing error of 3.1 milliseconds with a standard deviation of 22.1 milliseconds when compared with orbital solution determined with the APL 3.5 coefficients. As indicated by the standard deviations associated with these errors, the estimates obtained from the orbital solutions fitted using the SAO M-1 set of coefficients were significantly less variable than those obtained using the other two sets. In addition, the estimates obtained from the shorter overlapping 1 day arc were only consistent with the $5-1 / 4$ day arc estimates when the orbital solutions were obtained with the SAO M-1 set of coefficients.

6.0 ESTIMATION OF COORDINATES FOR THE GRARR MADGAR SITE

Two independent estimates of the coordinates of the GRARR site in Tananarive, Madagascar (MADGAR) were obtained using each set of coefficients (Reference 6). One estimate was obtained from optical flash sequence data recorded by the MOTS $40^{\prime \prime}$ camera (1 TANAN) during July 1966 and the other from range measurements taken at MADGAR during November 1965. The data sets used for these estimations are shown in Tables IX and X.

The two sets of coordinates estimated using the SAO M-1 coefficients were very consistent, within 5 meters of each other; whereas the estimates obtained using the other two sets of coefficients were not at all consistent. These estimates are shown in Table XI and Figure 9.

Table VI
Summary of Rosman Zero-Set Range Bias Error Estimates (meters)

Pass No.	Transponder Channel	SAO M1		NWL	5E-6	APL	3.5
		No. 1*	No. 2	No. 1	No. 2	No. 1	No. 2
652	A	-16.5		-26.5		-98.8	
653	A	- 6.1		-45.9		-35.9	
664	A	- 5.0		-18.0		-74.1	
665	A	- 2.0		-39.4		-16.3	
673	A	-19.1		-44.7		-15.8	
676	A	2.3	4.2	8.1	6.6	-25.8	-24.6
677	A	0.2	7.4	-51.8	- 23.6	-20.2	3.8
685	A	-29.5	-20.7	-60.0	-112.5	-46.7	-79.0
688	A	- 3.3	- 1.0	8.4	- 7.9	- 2.2	- 1.7
689	A	-14.9	- 7.7	-71.2	- 35.8	-38.7	- 7.7
697	A	-16.0		-49.4		-52.8	
700	C	20.6		25.4		36.5	
708	C	16.8		10.5		7.9	
709	C	17.0		-17.7		-33.7	
712	A	- 9.5		-14.5		11.8	
Mean	A	-10.0		-33.7		-34.6	
Std. dev.	A	8.8		21.0		30.7	
Mean	C	18.1		6.1		3.6	

[^3]Table VII
Summary of Rosman Timing Error Estimates

Pass No.	Transponder Channel	SAO M1		NWL 5E-6		APL	3.5
		No. 1	No. 2	No. 1	No. 2	No. 1	No. 2
652	A	-2.0		6.1		-7.7	
653	A	1.5		-11.1		- 4.3	
664	A	-3.9		- 9.9		-22.7	
665	A	1.0		-23.7		-16.9	
673	A	-3.4		-17.4		- 6.5	
676	A	-6.3	-6.9	10.0	12.9	- 0.9	-1.2
677	A	-0.2	-0.3	- 5.0	- 7.3	3.4	0.1
685	A	-3.5	-0.6	14.2	-12.2	31.3	1.5
688	A	-5.0	-5.3	31.4	10.7	25.1	0.7
689	A	0.1	1.2	13.2	12.5	25.6	-1.5
697	A	-3.0		19.6		38.9	
700	C	-5.4		18.1		18.9	
708	C	-2.3		3.3		2.7	
709	C	3.4		-18.9		5.5	
712	A	-2.8		-36.4		-28.2	
Mean	A	-2.4		- 0.8		3.1	
Std. dev.	A	2.4		9.8		22.1	
Mean	C	-1.4		0.8		9.0	

Table VIII
Summary of Random Error Estimates
(meters)

Pass No.	Transponder Channel	SAO M1		NWL	5E-6	APL	3.5
		No. 1	No. 2	No. 1	No. 2	No. 1	No. 2
652	A	3.3		3.5		6.0	
653	A	3.6		10.5		7.3	
664	A	3.2		3.6		6.1	
665	A	4.5		12.0		3.6	
673	A	2.6		4.7		3.1	
676	A	2.9	3.0	3.9	5.3	5.0	3.8
677	A	3.2	4.0	10.4	4.7	2.8	5.3
685	A	2.5	2.3	3.5	10.5	2.6	5.2
688	A	4.5	5.0	8.3	10.3	7.0	8.2
689	A	4.1	3.8	7.4	5.0	3.9	3.9
697	A	3.4		3.5		3.8	
700	C	5.8		10.8		16.8	
708	C	4.5		3.9		5.3	
709	C	3.1		4.4		3.6	
712	A	6.0		8.0		22.7	
Mean	A	3.7		6.6		6.2	
Mean	C	4.5		6.4		8.6	

Table IX
Summary of Optical Data by Station
For July 9, 10, and 11, 1966

Station	No. of Measurements	
	Right Ascension	Declination
1TANAN	14	14
1ROSMA	7	7
1COLBA	14	14
1BPOIN	14	14
1DENVR	20	20
1JOBUR	14	14
1ORGAN	91	91
1OLFAN	28	28
1SPAIN	21	21
1QUIPA	28	28
1CURAC	28	28
1JUPTR	35	35
1VmDO	7	7
AUSBAK	14	14
1 MAUIO	28	28
EDWAFB	2	2
Total	365	365

Table X
Summary of Optical and GRARR Data By Station For November 28 and 29, 1965

Station	No. of Measurements	
	Right Ascension	Declination
1ORGAN	59	59
1OLFAN	1	1
1SPAIN	1	1
1QUIPA	2	2
1CURAC	96	96
1JUPTR	127	127
1VILDO	287	287
Total	Range	
	24	1
MADGAR		

Table XI
Estimated Coordinates for Madgar

SAO M1 Gravity Model

$\underline{\text { Latitude }}$	E. Longitude	Spheroid Height
$-19^{\circ} 1^{\prime} 19.5^{\prime \prime}$	$47^{\circ} 18^{\prime} 7.9^{\prime \prime}$	1380.0 meters
-19 ${ }^{\circ} 1^{\prime} 19.4{ }^{\prime \prime}$	$47^{\circ} 18^{\prime} 8.0^{\prime \prime}$	1382.6 meters
0.1 "	-0.1"	-2.6 meters

APL 3.5 Gravity Model

	Latitude	E. Longitude		Spheroid Height
		-		
Optical Estimate	$-19^{\circ} 1^{\prime} 22.6^{\prime \prime}$	$47^{\circ} 18^{\prime}$	5.1 "	1454.5 meters
GRARR Estimate	$-19^{\circ} 1^{\prime} 23.7^{\prime \prime}$	$47^{\circ} 18^{\prime}$	5.7'	1443.1 meters
Difference	-1.1"		-0.6"	11.4 meters

NWL 5E-6 Gravity Model

	Latitude	E. Longitude		Spheroid Height
Optical Estimate	$-19^{\circ} 1^{\prime} 22.9^{\prime \prime}$	$47^{\circ} 18^{\prime}$	$4.8{ }^{\prime \prime}$	1458.0 meters
GRARR Estimate	$-19^{\circ} 1^{\prime} 24.9^{\prime \prime}$	$47^{\circ} 18^{\prime}$	7.5 "	1467.4 meters
Difference	-2.0"		-2.7'	10.6 meters

EAST LONGITUDE

1 OPTICAL ESTIMATE - SAO MI GRAVITY
2 GRARR ESTIMATE - SAO MI GRAVITY
3 OPTICAL ESTIMATE - APL 3.5 GRAVITY
4 GRARR ESTIMATE - APL 3.5 GRAVITY
5 OPTICAL ESTIMATE - NWL 5E-6 GRAVITY
6 GR.ARR ESTIMATE - NWL 5E-6 GRAVITY

Figure 9. Estimated Coordinates for MADGAR

7.0 REFERENCES

1. "Interim Status Report on Program Development and GEOS-A Data Analysis," NASA Contract Document, Wolf Research and Development Corporation, (NAS 5-9756-44A, 55, 71), August 1967.
2. Lundquist, C. A., Veis, G., 'Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth," Smithsonian Astrophys. Obs. Special Report No. 200, Vol. 1, 1966.
3. Guier, W. H., Newton, R. R., 'The Earth's Gravitational Field as Deduced from the Doppler Tracking of Five Satellites," Journal of Geophysical Research, Vol. 70, No. 18, September 1965.
4. Anderle, R. J., "Computational Methods Employed in Deriving Geodetic Results from Doppler Observations of Artificial Earth Satellites," Naval Weapons Laboratory Special Report No. 1977, April 1965.
5. Lerch, F. J., Marsh, J. G., O'Neill, B., 'Evaluation of the Goddard Range and Range Rate System at Rosman by Intercomparison with GEOS-I Long Arc Orbital Solutions," GSFC Document X-552-68-72, November 1967.
6. Lerch, F.J., Doll, C. E., Moss, S. J., O'Neill, B., 'The Determination and Comparison of the GRARR MADGAR Site Location," GSF C Document X-552-67-540, October 1967.
7. Köhnlein, W., 'The Earth's Gravitational Field as Derived from a Combination of Satellite Data with Gravity Anomalies", Paper Prepared for XIV General Assembly International Union of Geodesy and Geophysics International Association of Geodesy, October 1967.

APPENDIX A

FORCE MODELS USED IN THE

NONAME ORBIT DETERMINATION SYSTEM

APPENDIX A

FORCE MODELS USED IN THE

NONAME ORBIT DETERMINATION SYSTEM

1.1 FORCE MODELS

The data reduction program in its present form incorporates four force models. These are:

1. The earth gravitational field
2. The soiar and iunar gravitational perturbations
3. Solar radiation pressure
4. Atmospheric drag

The program is designed such that the gravitational coefficients and pertinent physical characteristics of satellites, such as reflectivity, cross-sectional area mass, and drag coefficient can be simply changed through card input or block data statement.

1.2 THE EARTH'S GRAVITATIONAL FIELD

The formulation of the geopotential used is:
$u=\frac{G M}{r}\left\{1+\sum_{n=2}^{k} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n} p_{n}^{m}(\sin \phi)\left[C_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right]\right\}$
where
G is the universal gravitational constant
M is the mass of the earth
r is the geocentric satellite distance
is the earth's mean equatorial radius
$\phi \quad$ is the sub-satellite geocentric latitude
$\lambda \quad$ is the sub-satellite east longitude
$\mathrm{p}_{\mathrm{n}}^{\mathrm{m}}(\sin \phi)$ is the associated spherical harmonic of degree n and order m .
The design of the potential function requires that denormalized gravitational coefficients $C_{n, m}$ and $S_{n, m}$ be used. The program is presently capable of accepting coefficients up to $(20,20)$ or any sub-set of these.

The transformation of the geopotential in earth-fixed coordinates (r, ϕ, λ) to gravitational accelerations in inertial coordinates (x, y, z) is accomplished as follows:

$$
\begin{equation*}
\ddot{\mathbf{x}}_{\oplus}=\frac{\partial \mathbf{u}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{x}}+\frac{\partial \mathbf{u}}{\partial \phi} \frac{\partial \phi}{\partial \mathbf{x}}+\frac{\partial \mathbf{u}}{\partial \lambda} \frac{\partial \lambda}{\partial \mathbf{x}} ; \ddot{\mathbf{y}}_{\oplus}, \ddot{\mathbf{z}}_{\oplus} \tag{A-2}
\end{equation*}
$$

where the subscript " \oplus " denotes accelerations due to the earth's field.

1.3 SOLAR AND LUNAR GRAVITATIONAL PERTURBATIONS

The perturbations caused by a third body, e.g., the sun or moon, on a satellite orbit are treated by defining a disturbing function R (Reference 1) which can be treated as the potential function U. For the solar perturbation R_{\odot} takes the form

$$
\begin{equation*}
\mathrm{R}_{\odot}=\frac{\mathrm{GMm} m_{\odot}}{\mathrm{r}_{\odot}}\left[\left(1-\frac{2 \mathrm{r}}{\mathrm{r}_{\odot}} \mathrm{S}+\frac{\mathrm{r}^{2}}{\mathrm{r}_{\odot}^{2}}\right)^{-1 / 2}-\frac{\mathrm{r} \mathrm{~s}}{\mathrm{r}_{\odot}}\right] \tag{A-3}
\end{equation*}
$$

where
$\mathrm{S}=\cos \left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}_{\odot}\right)$
$m_{\odot} \quad$ is the mass of the sun in earth masses
\vec{r}_{\odot} is the geocentric position vector of the sun
r_{\odot} is the geocentric distance to the sun
A-2
r is the geocentric distance to the satellite
$\vec{r} \quad$ is the geocentric position vector of the satellite
G is the universal gravitational constant
M is the mass of the earth

The acceleration of the satellite due to the sun is then

$$
\begin{equation*}
\ddot{x}_{\odot}=\frac{\partial R_{\odot}}{\partial r} \frac{\partial r}{\partial \mathbf{x}}+\frac{\partial R_{\odot}}{\partial \phi} \frac{\partial \phi}{\partial \mathbf{x}}+\frac{\partial R_{\odot}}{\partial \lambda} \frac{\partial \lambda}{\partial \mathbf{x}} ; \ddot{\mathrm{y}}_{\odot} ; \ddot{z}_{\odot} \tag{A-4}
\end{equation*}
$$

where ϕ and λ are the latitude and longitude of the satellite respectively. The lunar perturbations are found from Equation (A-3) by substituting the lunar mass and distance for those of the sun.

The lunar and solar ephemerides are computed internal to the program. These positions are computed at ten equal intervals over each five day period and least squares fit to a fourth order polynomial in time about the midpoint of the five day period. The positions of these bodies are then determined at each data point by evaluating the polynomial at the observation time.

1.4 SOLAR RADIATION PRESSURE

The acceleration acting on a satellite due to solar radiation pressure is formulated as follows (Reference 2).

$$
\begin{equation*}
\ddot{\mathrm{x}}_{\mathrm{RAD}}=-\frac{\mathrm{AP}}{\odot} \mathrm{~m} \gamma \nu \mathrm{~L}_{\mathrm{x}} ; \ddot{\mathrm{y}}_{\mathrm{RAD}} ; \ddot{z}_{\mathrm{RAD}} \tag{A-5}
\end{equation*}
$$

where

L is the inertial unit vector from the geocenter to the sun and whose components are $\mathrm{L}_{\mathrm{x}}, \mathrm{L}_{\mathrm{y}}, \mathrm{L}_{\mathrm{z}}$

A is the cross sectional area of the satellite
m is the satellite mass
γ is a factor depending on the reflective characteristics of the satellite.
ν is the eclipse factor such that:
$\nu=\left\{\begin{array}{l}0 \text { when satellite is in earth's shadow } \\ 1 \text { when satellite is illuminated by the sun }\end{array}\right.$
P_{\odot} is the solar radiation pressure in the vicinity of the earth,

$$
4.5 \times 10^{-6} \frac{\text { Newton }}{\mathrm{m}^{2}}
$$

At present, it is assumed that the satellite is specularly reflecting with reflectivity, ρ, and thus

$$
\begin{equation*}
\gamma=(1+\rho) . \tag{A-6}
\end{equation*}
$$

The vector $\hat{\mathrm{L}}$ and the eclipse factor are determined from the solar ephemeris subroutine previously described, the satellite ephemeris, and involve the approximation of a cylindrical earth shadow.

1.5 ATMOSPHERIC DRAG

The atmospheric decelerations are computed as follows:

$$
\begin{equation*}
\ddot{\mathrm{x}}_{\mathrm{DRAG}}=\frac{\rho \mathrm{C}_{\mathrm{D}} \mathrm{Av} \mathrm{v}_{\mathrm{x}}}{2 \mathrm{~m}} ; \ddot{\mathrm{y}}_{\mathrm{DRAG}}, \ddot{\mathrm{z}}_{\mathrm{DRAG}} \tag{A-7}
\end{equation*}
$$

where
ρ is the ambient atmospheric density
C_{D} is the satellite drag coefficient
A is the projected area of the satellite on a plane perpendicular to direction of motion
m is the satellite mass.
The velocity vector $\vec{\nu}$ given in inertial coordinates by

$$
\begin{equation*}
\vec{\nu}=\nu_{x} \hat{i}+\nu_{y} \hat{j}+\nu_{z} \hat{k} \tag{A-8}
\end{equation*}
$$

can be chosen to be either the velocity relative to the atmosphere which implies that the atmosphere rotates with the earth or the inertial velocity which assumes that the atmosphere is static. Presently, the former assumption is made.

The density, ρ, is computed from the 1962 U.S. Standard Atmosphere.

REFERENCES

1. Kozai, Y, Smithsonian Astrophysical Observatory Special Report 22, pp. 710.
2. H. Koelle, Handbook of Astronautical Engineering, pp. 8-33, McGraw-Hill, 1961.

APPENDIX B

PREPROCESSING OF OPTICAL OBSERVATIONS

APPENDIX B

PREPROCESSING OF OPTICAL OBSERVATIONS

2.1 PREPROCESSING OF OPTICAL DATA

The first step in the processing of optical observations is usually performed by the observing source. This consists of developing a plate or film, identifying the image or images of the satellite and the images of several reference stars whose right ascensions and declinations are well known. The initial measurements of both satellite images and reference stars consist of linear rectangular coordinates. From the knowledge of the spherical coordinates of the reference stars, the right ascensions and declinations of the sateliite images may be calculated. These coordinates as received by the preprocessor may be referred to the mean equator and equinox of date, true equator and equinox of date, or mean equator and equinox of some standard epoch.

Preprocessing includes, for example in the case of the GEOS-I SAO BakerNunn data, updating the observations from a mean equinox and equator of 1950.0 to the true equinox and equator of date through the luni-solar precession and nutation effects, the correction for planetary aberration, and the transformation of the A-S (SAO atomic time) time tag to UTC time. It is necessary to know UT1 time when the angle between Aries and the Mean Greenwich Meridian is required. UT1 time is then calculated on the basis of the differences (UT1-UTC) as published by the U.S. Naval Observatory. In the case of active flash data, where the time is recoverable to better than 100 microseconds through the use of APL published corrections to the satellite on-board clock (Reference 1), the time tag is shifted to correspond to the center of the photographic flashing light image. This latter adjustment corresponds to a shift of 0.5 milliseconds which is equivalent to approximately 4.0 meters of satellite position.

Currently, the preprocessor transforms all right ascensions and declinations to the true equator and equinox of the epoch of the observations being processed. If the observations were originally referred to the mean equator and equinox of a particular epoch, it is only necessary to precess from that epoch to the dates of the observation. However, if they were referred to the true equator and equinox of a particular epoch, it is necessary first to transform them to the mean equator and equinox of that same epoch and then precess to the epochs of the observations.

Finally, a transformation must be made from the mean equator and equinox of the epoch of the observation to the true equator and equinox of the epoch of the observation.

2.2 NUTATION

The transformations from the true equator and equinox of date to the mean equator and equinox of date is

$$
\begin{equation*}
\mathrm{Y}=\mathrm{NX} \tag{B-1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{Y}=\left[\begin{array}{ll}
\cos \delta_{m} & \cos \alpha_{m} \\
\cos \delta_{m} & \sin \alpha_{m} \\
\sin \delta_{\mathrm{m}} &
\end{array}\right] \tag{B-2}\\
& X=\left[\begin{array}{ll}
\cos \delta_{\mathrm{T}} & \cos \alpha_{\mathrm{T}} \\
\cos \delta_{\mathrm{T}} & \sin \alpha_{\mathrm{T}} \\
\sin \delta_{\mathrm{T}} &
\end{array}\right] \tag{B-3}
\end{align*}
$$

$$
\mathrm{N}=\left[\begin{array}{ccc}
1 & +\Delta \psi \cos \epsilon_{\mathrm{m}} & +\Delta \psi \sin \epsilon_{\mathrm{m}} \tag{B-4}\\
-\Delta \psi \cos \epsilon_{\mathrm{m}} & 1 & +\Delta \epsilon \\
-\Delta \psi \sin \epsilon_{\mathrm{m}} & -\Delta \epsilon & 1
\end{array}\right]
$$

where
$\alpha_{m}, \delta_{m}=$ right ascension and declination referred to mean equator and equinox of date
$\alpha_{T}, \delta_{T}=$ right ascension and declination referred to true equator and equinox of date
$\epsilon_{m} \quad=$ mean obliquity of date
$\Delta \psi \quad=$ nutation in longitude
$\Delta \epsilon \quad=$ nutation in obliquity.
The inverse transformation is simply:

$$
\begin{equation*}
X=N^{-1} Y=N^{T} Y \tag{B-5}
\end{equation*}
$$

2.3 PRECESSION

The transformation from the mean equator and equinox of 1950.0 to the mean equator and equinox of an arbitrary epoch t is

$$
\begin{equation*}
Y=P X \tag{B-6}
\end{equation*}
$$

where

$$
\begin{align*}
& Y=\left[\begin{array}{ll}
\cos \delta_{t 1} & \cos \alpha_{t 1} \\
\cos \delta_{t 1} & \sin \alpha_{t 1} \\
\sin \delta_{t 1} &
\end{array}\right] \tag{B-7}\\
& X=\left[\begin{array}{ll}
\cos \delta_{1950.0} & \cos \alpha_{1950.0} \\
\cos \delta_{1950.0} & \sin \alpha_{1950.0} \\
\sin \delta_{1950.0} &
\end{array}\right]
\end{align*}
$$

$\mathbf{P}=\left[\begin{array}{c}(\cos z \cos \theta \cos \zeta-\sin z \sin \zeta)(-\cos z \cos \theta \sin \zeta-\sin z \cos \zeta)(-\cos z \sin \theta) \\ (\sin z \cos \theta \cos \zeta+\cos z \sin \zeta)(-\sin z \cos \theta \sin \zeta+\cos z \cos \zeta)(-\sin z \sin \theta) \\ (\sin \theta \cos \zeta)\end{array}\right]$

The inverse transformation is

$$
\begin{equation*}
\mathrm{X}=\mathrm{P}^{-1} \mathrm{Y}=\mathrm{P}^{\mathrm{T}} \mathrm{Y} \tag{B-10}
\end{equation*}
$$

Since the expression for z, θ, ζ are tied to 1950.0 as an epoch, the precession between 2 different epochs, neither of which is 1950.0 , must be performed in two steps, using 1950.0 as an intermediary epoch.

REFERENCES

1. Applied Physics Laboratory (APL), "GEOS-A Clock Calibration" John Hopkins University, TSSD 186, Silver Spring, Maryland, 1966.

APPENDIX C

TRACKING STATION COORDINATES

APPENDIX C

TRACKING STATION COORDINATES

1.0 DATUM PARAMETERS AND STATION COORDINATES

For the purpose of long arc satellite data reduction and intercomparison, all GEOS-I participating tracking stations have been transformed to a common datum. The common datum selected is the SAO Standard Earth C-5 Model (Reference 1) in which the Baker-Nunn station positions are used as the controlling stations for all other stations to be transformed. The semi-major axis and flattening coefficient for the SAO C-5 Earth Model are 6378165 meters and 208.25 respectively. Descriptions and formulations to effect the transformations from major and isolated datums are presented in Reference 2. The transformation of local datum station coordinates to a common center of mass reference system is important to be performed since the datum shifts are quite large. For example, on the North American datum the center of mass shift to the C-5 Standard Earth is approximately 250 meters. The center of mass coordinates of the SAO C-5 Baker-Nunn stations are assessed by SAO to have approximately 20 meter accuracy.

In order to effect any transformation, the parameters of the original datums must be known as well as the geodetic latitude, longitude and height. Table I provides a listing of the original datums and their parameters on which the stations were originally surveyed. Tables II to XI list alternately the original surveyed ellipsoidal positions and the SAO C-5 ellipsoidal positions for over 100 GEOS-I tracking stations that have been used in the long arc intercomparison effort. These tables contain symbols designating the source of original station coordinates. The symbols are defined in Section 2.0 with a list of source information. The C-5 positions for 1TANAN and MADGAR (Reference 3) have been derived by the station estimation technique contained in the Orbit Determination Program NONAME. Tables XII to XXI provide a listing of the proper station names from which the six letter designations have been derived.

Table I

Parameters of Original Datums

Datum Name	Semi-Major Axis (meters)	1/f
North American (N.A.)	6378206.4	294.9787
European	6378388.0	297.0
Tokyo	6377397.2	299.1528
Argentina	6378388.0	297.0
Mercury	6378166.0	298.3
Madagascar	6378388.0	297.0
Australian Nat'l.	6378160.0	298.25
Old Hawaiian	6378206.4	294.9787
Indian	6377276.3	300.8017
Arc (Cape)	6378249.1	293.4663
1966 Canton Astro	6378388.0	297.0
Johnston Island		
1961	6378388.0	297.0
Midway Astro 1961	6378388.0	297.0
Navy Iben Astro		
1947	6378206.4	294.9787
Provisional DOS	6378388.0	297.0
Astro 1962, 65		
Allen Sodano Lt.	6378388.0	297.0
1966 SECOR ASTRO	6378388.0	297.0
Viti Levu 1916	6378249.1	293.4663
CORREGO ALEGRE	6378206.4	294.9787
USGS 1962 ASTRO	6378206.4	294.9787
BERNE	6377397.2	299.1528

Table II
SAO - Optical - Source A

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
	1ORGAN	9001	$32^{\circ} 25^{\prime} 24!.56$	$253^{\circ} 26^{\prime} 51^{\prime} \cdot 17$	1649	N.A.
			322524.70	2532648.29	1610	C-5
	1OLFAN	9002	-25 5733.85	281453.91	1562	Arc (Cape)
			-25 5737.67	281451.45	1560	C-5
	WOOMER	9003	-31 0607.26	1364658.70	185	Australian
			-31 0604.14	1364701.93	158	C-5
	1SPAIN	9004	362751.24	3534741.47	7	European
			362746.68	3534736.55	56	C-5
	1TOKYO	9005	354011.08	1393228.22	58	Tokyo
			354023.03	1393216.42	84	C-5
	1NATOL	9006	292138.90	792725.61	1847	European
			292134.38	792727.05	1855	C-5
	1QUIPA	9007	-16 2805.09	2883022.84	2600	N.A.
			-16 2758.04	2883024.02	2479	C-5
	1SHRAZ	9008	293817.96	523111.80	1578	European
			293813.59	523111.20	1561	C-5
	1CURAC	9009	120521.55	2910942.55	23	N.A.
			120524.93	2910943.97	-33	C-5
	1JUPTR	9010	270113.00	2795312.92	26	N.A.
			270114.23	2795312.95	-36	C-5
	1VILDO	9011	-3156 36.53	2945339.82	598	Argentinean
			-315636.35	2945336.11	636	C-5
	1MAUIO	9012	204237.49	2034424.11	3027	Old Hawaiian
			204225.66	2034433.23	3027	C-5

Table II (Continued)

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
A	AUSBAK	9023	$-31^{\circ} 23^{\prime} 30.82$	$136^{\circ} 52{ }^{\prime} 39.02$	164	Australian
			-31 2327.69	1365242.23	137	C-5
A	OSLONR	9426	601240.38	104508.74	585	European
			601238.88	104502.26	573	C-5
I	NATALB*	9029	-05 5550.00	3245018.00	112	N.A.
			-05 5543.49	3245021.30	45	C-5
D	AGASSI*	9050	423020.97	2882628.71	193	N.A.
			423020.51	2882629.79	138	C-5
I	COLDLK*	9424	544438.02	2495725.85	597	N.A.
			544437.26	2495721.90	548	C-5
I	EDWAF ${ }^{*}$	9425	345750.68	2420511.39	784	N.A.
			345750.17	2420507.80	754	C-5
I	RIGLAT*	9428	565654.00	240342.00	5	European
			565652.37	240337.49	-15	C-5
I	POTDAM*	9429	522255.00	130401.00	111	European
			522252.33	130355.80	106	C-5
I	ZVENIG*	9430	554137.70	364603.00	145	European
			554136.17	364600.17	114	C-5

[^4]Table III
STADAN - Optical - Source B

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
1BPOIN	1021	$38^{\circ} 25^{\prime} 49^{\prime \prime} .63$	$282^{\circ} 54{ }^{\prime} 48^{\prime \prime} \cdot 23$	5	N.A.
		382549.44	2825448.65	-50	C-5
1FTMYR	1022	263251.89	2780803.93	19	N.A.
		263253.08	2780803.80	-42	C-5
1OOMER	1024	-31 2330.07	1365211.05	152	Australian
		-31 2326.96	1365214.25	148	C-5
1QUITO	1025	-0 3728.00	2812514.81	3649	N.A.
		-0 3722.63	2812515.23	3554	C-5
1LIMAP	1026	-114644.43	2825058.23	155	N.A.
		-1146 37.56	2825058.86	34	C-5
1SATAG	1028	-33 0907.66	2891951.35	922	N.A.
		-33 0858.76	2891952.59	705	C-5
1 MOJAV	1030	351948.09	2430602.73	905	N.A.
		351947.57	2430559.18	874	C-5
1JOBUR	1031	-25 5258.86	274227.93	1530	ARC (Cape)
		-25 5302.70	274225.41	1546	C-5
1NEWFL	1032	474429.74	3071643.37	104	N.A.
		474428.73	3071646.67	58	C-5
1COLEG	1033	645219.72	2120947.17	162	N.A.
		645217.78	2120937.29	139	C-5
1GFORK	1034	480121.40	2625921.56	253	N.A.
		480120.81	2625919.55	200	C-5
1WNKFL	1035	512644.12	3591814.62	62	European
		512640.67	3591808.35	76	C-5

Table III (Continued)

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
1ROSMA	1042	$35^{\circ} 12^{\prime} 06^{\prime} \cdot 93$	$277^{\circ} 07^{\prime} 41^{\prime} \cdot 01$	914	N.A.
		351207.03	2770740.81	857	$\mathrm{C}-5$
1TANAN	1043	-190027.09	471800.46	1377	Tananarive
		-190033.26	471758.89	1355	$\mathrm{C}-5$

Table IV
STADAN - R/ $\dot{R}-$ Source B

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
CARVON	1152	$-24^{\circ} 54^{\prime} 144^{\prime} .85$	$113^{\circ} 42^{\prime} 55!05$	38	Australian
ROSRAN	1126	-245412.29	1134258.54	10	C-5
		351145.05	2770726.23	880	N.A.
MADGAR	1122	-190113.32	471809.45	1403	Tananarive
		-190119.41	471807.96	1382	C-5

C-6

Table V
NAVY TRANET - Doppler - Source C

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
LASHAM	2006	$51^{\circ} 11^{\prime} 10^{\prime} \cdot 62$	$358^{\circ} 58^{\prime} 30.51$	182	European
		511107.12	3585824.25	196	C-5
SANHES	2008	-23 1301.74	3140750.59	608*	Correga Alegre
		-23 13301.74	3140750.59	608	C-5
PHILIP	2011	145857.79	1200425.98	8	Tokyo
		145916.42	1200421.61	-70	C-5
SMTHFD	2012	-34 4031.31	1383912.39	39	Australian
		-34 4028.16	1383915.66	31	C-5
MISAWA	2013	404304.63	1412004.69	-10	Tokyo
		404314.63	1411951.45	38	C-5
ANCHOR	2014	611701.98	2101037.46	61	N.A.
		611659.60	2101028.60	44	C-5
TAFUNA	2017	-14 1950.19	1891713.96	6*	USGS 1962 Astro
		-14 1950.19	1891713.96	6	C-5
THULEG	2018	763218.62	2911346.72	43	N.A.
		763220.72	2911351.07	-7	C-5
MCMRDO	2019	-77 5051.00	1664025.00	-43	Mercury
		-77 5050.58	1664035.02	-29	C-5
WAHIWA	2100	213126.86	2020000.63	380	Old Hawaiian
		213114.95	2020009.83	368	C-5
LACRES	2103	321643.75	2531448.25	1201	N.A.
		321643.91	2531445.34	1162	C-5

[^5]Table V (Continued)

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
LASHM2	2106	$51^{\circ} 11^{\prime} 12^{\prime} .32$	$358^{\circ} 58^{\prime} 300^{\prime} 21$	187	European
APLMND	2111	390947.83	2830611.07	146	N.A.
		390947.60	2830611.52	90	C-5
PRETOR	2115	-255646.09	282053.00	1417	European
SHEMYA	2739	524301.52	1740651.43	44	N.A.
		524256.52	1740644.17	89	C-5
BELTSV	2742	390139.46	2831027.25	50	N.A.
		390139.23	2831027.72	-5	C-5
STNVIL	2745	332531.57	2690910.70	44	N.A.
		332531.76	2690909.66	-10	C-5

Table VI
AIR FORCE - Optical - Source I

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
E	ANTIGA	3106	$17^{\circ} 08^{\prime} 511^{\prime} .68$	298¹2'37'41	7	N.A.
			170853.88	2981239.19	-42	C-5
	GRNVLE	3333	332848.97	2685949.17	45	N.A.
			332849.15	2685948.12	-9	C-5
	GRVILL	3334	332531.95	2690511.35	43	N.A.
			332532.14	2690510.30	-10	C-5
	USAFAC	3400	390022.44	2550701.01	2191	N.A.
			390021.99	2550658.32	2147	C-5
E	BEDFRD	3401	422717.53	2884335.03	88	N.A.
			$42 \quad 2717.06$	2884336.14	33	C-5
E	SEMMES	3402	304649.35	2714452.37	79	N.A.
			304649.85	2714451.64	23	C-5
	SWANIS	3404	172416.57	2760329.87	83	N.A.
			172418.90	2760329.71	18	C-5
	GRDTRK	3405	212547.05	2885114.03	7	N.A.
			212548.69	2885115.03	-48	C-5
	CURACO	3406	120522.11	2910943.76	23	N.A.
			120525.49	2910945.16	-34	C-5
	TRNDAD	3407	104432.78	2982323.67	269	N.A.
			104436.16	2982325.43	210	C-5
	GRANFK	3451	475638.63	2623711.21	296	N.A.
			475638.03	2623709.15	242	C-5
	TWINOK	3452	360725.69	2624704.48	312	N.A.
			360725.58	2624702.68	262	C-5

Table VI (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Source \& Name \& Station No. \& Latitude \& Longitude \& Geodetic Height (meters) \& Datum

\hline \multirow{20}{*}{E

E
E
E} \& \multirow[t]{2}{*}{ROTHGR} \& \multirow[t]{2}{*}{3453} \& $51^{\circ} 25^{\prime} 00^{\prime} .00$ \& $9^{\circ} 30^{\prime} 06^{\prime}: 00$ \& 351 \& European

\hline \& \& \& 512457.05 \& 93000.58 \& 352 \& C-5

\hline \& \multirow[t]{2}{*}{ATHNGR} \& \multirow[t]{2}{*}{3463} \& 375330.00 \& 234430.00 \& 16 \& European

\hline \& \& \& 375326.07 \& 234426.73 \& 23 \& C-5

\hline \& \multirow[t]{2}{*}{TORRSP} \& \multirow[t]{2}{*}{3464} \& 402918.53 \& 3563441.24 \& 588 \& European

\hline \& \& \& 402914.10 \& 3563436.06 \& 635 \& C-5

\hline \& \multirow[t]{2}{*}{CHOFUJ} \& \multirow[t]{2}{*}{3465} \& 353957.00 \& 1393212.00 \& 49 \& Tokyo

\hline \& \& \& 354008.96 \& 1393200.19 \& 75 \& C-5

\hline \& \multirow[t]{2}{*}{KINDLY} \& \multirow[t]{2}{*}{3471} \& 322257.30 \& 2951900.46 \& 26 \& N.A.

\hline \& \& \& 322257.41 \& 2951902.09 \& -23 \& C-5

\hline \& \multirow[t]{2}{*}{HUNTER} \& \multirow[t]{2}{*}{3648} \& 320005.87 \& 2785046.36 \& 17 \& N.A.

\hline \& \& \& 320006.32 \& 2785046.32 \& -40 \& C-5

\hline \& \multirow[t]{2}{*}{JUPRAF} \& \multirow[t]{2}{*}{3649} \& 270114.80 \& 2795313.72 \& 26 \& N.A.

\hline \& \& \& 270116.02 \& 2795313.72 \& -37 \& C-5

\hline \& \multirow[t]{2}{*}{ABERDN} \& \multirow[t]{2}{*}{3657} \& 392818.97 \& 2835544.56 \& 4 \& N.A.

\hline \& \& \& 392818.71 \& 2835545.10 \& -51. \& C-5

\hline \& \multirow[t]{2}{*}{HOMEST} \& \multirow[t]{2}{*}{3861} \& 253024.69 \& 2793642.69 \& 18 \& N.A.

\hline \& \& \& 253026.02 \& 2793642.70 \& -44 \& C-5

\hline \& \multirow[t]{2}{*}{CHYWYN} \& \multirow[t]{2}{*}{3902} \& 410759.20 \& 2550802.65 \& 1890 \& N.A.

\hline \& \& \& 410758.61 \& 2550759.94 \& 1845 \& C-5

\hline
\end{tabular}

Table VII
ARMY MAP SERVICE - SECOR - Source H

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
G	HERNDN	5001	$38^{\circ} 59^{\prime} 37.69$	$282^{\circ} 40^{\prime} 16^{\prime \prime} 68$	119	N.A.
			385937.47	2824017.08	64	C-5
I	CUBCAL	5200	324800.00	2425200.00	101	N.A.
			324759.74	2425156.55	71	C-5
I	LARSON	5201	471100.00	2404000.00	354	N.A.
			471058.76	2403955.68	319	C-5
I	WRGTON	5202	433900.00	2642500.00	481	N.A.
			433859.49	2642458.27	428	C-5
G	GREENV	5333	332532.34	2690510.78	43	N.A.
			332532.53	2690509.73	-10	C-5
	TRUKIS	5401	72739.30	1515031.28	5*	Navy Iben Astro 1947
			72739.30	1515031.28	5	C-5
	SWALLO	5402	-10 1821.42	1661756.79	9*	$\begin{aligned} & 1966 \text { SECOR } \\ & \text { Astro } \end{aligned}$
			-10 1821.42	1661756.79	9	C-5
	KUSAIE	5403	51744.43	1630129.88	7*	$\begin{aligned} & \text { Astro } 1962, \\ & 65, \text { Allen } \\ & \text { Sodano Lt } \end{aligned}$
			51744.43	1630129.88	7	C-5
	GIZZOO	5404	-8 0540.58	1564924.82	49*	$\begin{aligned} & \text { Provisional } \\ & \text { DOS } \end{aligned}$
			-8 0540.58	1564924.82	49	C-5

${ }^{*}$ MSL

Table VII (Continued)

Source	Name	Station No.	Latitude	Longitude	$\begin{aligned} & \text { Geodetic } \\ & \text { Height } \\ & \text { (meters) } \end{aligned}$	Datum
GGG	TARAWA	5405	$1^{\circ} 21^{\prime} 42{ }^{\prime} 13$	$172^{\circ} 55^{\prime} 47.26$	7*	$\begin{array}{\|l} 1966 \text { SECOR } \\ \text { Astro } \end{array}$
			12142.13	172554726	7	C-5
	NANDIS	5406	-17 4531.01	1772702.83	17*	Viti Levu 1916
			-17 4531.01	1772702.83	17	C-5
	CANTON	5407	-2 4628.90	1881643.47	6*	$\begin{aligned} & 1966 \text { Canton } \\ & \text { Astro } \end{aligned}$
			-2 4628.90	1881643.47	6	C-5
	JONSTN	5408	164351.68	1902841.55	6*	Johnston Island 1961
			164351.68	1902841.55	6	C-5
	MIDWAY	5410	281232.06	1823749.53	6	Midway Astro 1961
			281232.06	1823749.53	6	C-5
	MAUIHI	5411	204937.00	2033152.77	32	Old Hawaiian
			204925.14	2033201.88	31	C-5
	FTWART	5648	315518.41	2782600.26	29	N.A.
			315518.86	2782600.18	-27	C-5
	HNTAFB	5649	320004.04	2785043.17	27	N.A.
			320004.49	2785043.13	-30	C-5
	HOMEFL	5861	252921.18	2793739.35	18	N.A.
			252922.51	2793739.37	-44	C-5

*MSL

Table VIII
USC \&GS - Optical - Source F

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
BELTVL	6002	$39^{\circ} 01^{\prime} 399^{\prime} .03$	$283^{\circ} 10^{\prime} 266^{\prime} 94$	45	N.A.
ASTRMD	6100	390138.80	2831027.40	-10	C-5
		390139.72	2831027.83	45	N.A.
TIMINS	6113	483356.17	2783744.54	290	N.A.
		483355.70	2783744.49	232	C-5

Table IX
SPEOPT - Optical - Source B

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
1UNDAK	7034	$48^{\circ} 01^{\prime} 21^{\prime} .40$	$262^{\circ} 59^{\prime} 21^{\prime}: 56$	255	N.A.
1EDINB	7036	262245.44	2614009.03	67	C-5
		262246.35	2614007.34	15	N.A.
1COLBA	7037	385336.07	2674742.12	271	N-5
		385335.81	2674740.85	218	C-5
1BERMD	7039	322148.83	2952032.56	21	N.A.
		322148.94	2952034.18	-28	C-5
1PURIO	7040	181526.22	2940022.17	58	N.A.
		181528.30	2940023.63	5	C-5

Table IX (Continued)

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
1GSFCP	7043	$39^{\circ} 01^{\prime} 15^{\prime} \cdot 01$	$283{ }^{\circ} 10^{\prime} 19!93$	54	N.A.
		390114.78	2831020.39	-1	C-5
1CKVLE	7044	382212.50	2742116.81	187	N.A.
		382212.33	2742116.28	131	C-5
1DENVR	7045	393848.03	2552341.19	1796	N.A.
		393847.54	2552338.52	1751	C-5
1JUM24	7071	270112.77	2795312.31	25	N.A.
		270114.00	2795312.30	-38	C-5
1JUM40	7072	270113.17	2795312.49	25	N.A.
		270114.39	2795312.49	-38	C-5
1JUPC1	7073	270113.11	2795312.72	22	N.A.
		270114.33	2795312.72	-41	C-5
1 JUBC 4	7074	270113.33	2795312.76	25	N.A.
		270114.55	2795312.76	-38	C-5
1SUDBR	7075	462720.99	2790310.35	281	N.A.
		462720.52	2790310.35	224	C-5
1JAMAC	7076	180431.98	2831126.52	485	N.A.
		180434.20	2831127.03	423	C-5

Table X
SPEOPT - Laser - Source B

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
ROSLAS	7051	$35^{\circ} 11^{\prime} 466^{\prime} 60$	$277^{\circ} 07^{\prime} 26^{\prime \prime 2} 2$	879	N.A.
GODLAS	7050	390113.68	2831018.05	55	C-5
		390113.45	2831018.51	0	N.A.
		$35-5$			

Table XI
INTERNATIONAL - Optical - Source I

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
DELFTH	8009	$52^{\circ} 00^{\prime} 09^{\prime} \cdot 24$	$4^{\circ} 22^{\prime} 21^{\prime}!23$	23	European	
	MALVRN	8011	520839.12	3580159.49	111	European
			52006.12	42215.30	28	C-5
	ZIMWLD	8010	465241.77	72757.56	898	BERNE
			465236.73	72752.54	907	C-5

Table XII
SAO - optical

Name	Station No.	Location
1ORGAN	9001	
1OLFAN	9002	Organ Pass, New Mexico
1OOMER	9003	Olifantsfontein, South Africa
1SPAIN	9004	Woomera, Australia
1TOKYO	9005	San Fernando, Spain
1NATOL	9006	Tokyo, Japan
1QUIPA	9007	Naini Tal, India
1SHRAZ	9008	Shiraz, Iran
1CURAC	9009	Curacao, Lesser Antilles
1JUPTR	9010	Jupiter, Florida
1VILDO	9011	Villa Dolores, Argentina
1MAUIO	9012	Maui, Hawaii
OSLONR	9426	Oslo, Norway
AUSBAK	9023	Woomera, Australia
NATALB	9029	Natal, Brazil
AGASSI	9050	Cambridge, Massachusetts
COLDLK	9424	Cold Lake, Alberta
EDWAFB	9425	Edwards AFB, California
RIGLAT	9428	Riga, Latvia
POTDAM	9429	
ZVENIG		

Table XIII
STADAN - Optical

Name	Station No.	Location
1BPOIN	1021	Blossom Point, Maryland
1FTMYR	1022	Fort Myers, Florida
1OOMER	1024	Woomera, Australia
1QUITO	1025	Quito, Ecuador
1LIMAP	1026	Lima, Peru
1SATAG	1028	Santiago, Chile
1MOJAV	1030	Mojave, California
1JOBUR	1031	Johannesburg, Union of South Africa
1NEWFL	1032	St. John's, Newfoundland
1COLEG	1033	College, Alaska
1GFORK	1034	East Grand Forks, Minnesota
1WNKFL	1035	Winkfield, England
1ROSMA	1042	Rosman, North Carolina
1TANAN	1043	Tananarive, Madagascar
$\begin{gathered} \text { Table XIV } \\ \text { STADAN }-\mathrm{R} / \dot{\mathrm{R}} \end{gathered}$		
Name	Station No.	Location
CARVON	1152	Carnarvon, Australia
ROSMAN	1126	Rosman, North Carolina
MADGAR	1122	Tananarive, Madagascar

Table XV
NAVY TRANET - Doppler

Name	Station No.	Location
LASHAM	2006	Lasham, England
SANHES	2008	Sao Jose dos Campos, Brazil
PHILIP	2011	San Miquel, Philippines
SMTHFD	2012	Smithfield, Australia
MISAWA	2013	Misawa, Japan
ANCHOR	2014	Anchorage, Alaska
TAFUNA	2017	Tafuna, American Samoa
THULEG	2018	Thule, Greenland
MCMRDO	2019	McMurdo Sound, Antarctica
WAHIWA	2100	South Point, Hawaii
LACRES	2103	Las Cruces, New Mexico
LASHM2	2106	Lasham, England
APLMND	2111	2715

Table XVI
AIR FORCE - Optical

Name	Station No.	Location
ANTIGA	3106	Antigua Island, Lesser Antilles
GRNVLE	3333	Stoneville, Mississippi
GRVILL	3334	Stoneville, Mississippi
USAFAC	3400	Colorado Springs, Colorado
BEDFRD	3401	L. G. Hanscom Field, Massachusetts
SEMMES	3402	Semmes Island, Georgia
SWANIS	3404	Swan Island, Caribbean Sea
GRDTRK	3405	Grand Turk, Caicos Islands
CURACO	3406	Curacao, Lesser Antilles
TRNDAD	3407	Trinidad Island
GRANFK	3451	Grand Forks, North Dakota
TWINOK	3452	Twin Oaks, Oklahoma
ROTHGR	3453	Rothwesten, West Germany
ATHNGR	3463	Athens, Greece
TORRSP	3464	Torrejon de Ardoz, Spain
CHOF UJ	3465	Chofu, Japan
KINDLY	3471	Kindly AFB, Bermuda
HUNTER	3648	Hunter AFB, Georgia
JUPRAF	3649	Jupiter, Florida
ABERDN	3657	Aberdeen, Maryland
HOMEST	3861	Homestead AFB, Florida
CHYWYN	3902	Cheyenne, Wyoming

Table XVII
ARMY MAP SERVICE - Secor

Name
Station No.
Location

HERNDN	5001	Herndon, Virginia
CUBCAL	5200	San Diego, California
LARSON	5201	Moses Lake, Washington
WRGTON	5202	Worthington, Minnesota
GREENV	5333	Greenville, Mississippi
TRUKIS	5401	Truk Island, Caroline Islands
SWALLO	5402	Swallow Island, Santa Cruz Islands
KUSAIE	5403	Kusaie Islands, Caroline Island
GIZZOO	5404	Gizzoo, Gonzongo, Solomon Islands
TARAWA	5405	Tarawa, Gilbert Islands
NANDIS	5406	Nandi, Vitilevu, Fiji Islands
CANTON	5407	Canton Island, Phoenix Islands
JONSTN	5408	Johnston Island, Pacific Ocean
MIDWAY	5410	Eastern Island, Midway Islands
MAUIHI	5411	Maui, Hawaii
FTWART	5648	Fort Stewart, Georgia
HNTAFB	5649	Hunter AFB, Georgia
HOMEFL	5861	Homestead AFB, Florida

Table XVIII
USC \& GS - Optical

Name	Station No.	
BELTVLion		
BELTVL	6002	Beltsville, Maryland
ASTRMD	6100	Beltsville, Maryland
TIMINS	6113	Timmins, Ontario

Table XIX
 SPEOPT - Optical

Name	Station No.	Location
1UNDAK	7034	Univ. North Dakota, Grand Forks, North Dakota
1EDINB	7036	Edinburg, Texas
1COLBA	7037	Columbia, Missouri
1BERMD	7039	Bermuda Island
1PURIO	7040	San Juan, Puerto Rico
1GSFCP	7043	GSFC, Greenbelt, Maryland
1CKVLE	7044	Clarksville, Indiana
1DENVR	7045	Denver, Colorado
1JUM24	7071	Jupiter, Florida
1JUM40	7072	Jupiter, Florida
1JUPC1	7073	Jupiter, Florida
1JUBC4	7074	Jupiter, Florida
1SUDBR	7075	Sudbury, Ontario
1JAMAC	7076	Jamaica, B. W. I.

Name	Table XX SPEOPT - Laser	
	Station No.	Location
ROSLAS	7051	Rosman, North Carolina
GODLAS	7050	GSFC, Greenbelt, Maryland
	Table XXI	
	INTERNATIONAL - Optical	
Name	Station No.	Location
DELFTH	8009	Delft, Holland
MALVRN	8011	Malvern, England
ZIMWLD	8010	Berne, Switzerland

2.0 SOURCES

The following sources were used to obtain the original datum positions:

Symbol	Source
A	Geodetic Parameters for a Standard Earth Obtained from Baker-Nunn Observations; September 1966; Smithsonian Astrophysical Observatory.
B	Goddard Directory of Tracking Station Locations; August 1966; Goddard Space Flight Center.
C	NWL-8 Geodetic Parameters Based on Doppler Satellite Observations; July 1967; R. Anderle and S. Smith, Naval Weapons Laboratory.

Since the above official documents did not contain all those positions that were to be transformed, it was necessary to contact other sources for the positions of the remaining stations. These sources are:

Symbol
D Private communication with personnel at SAO; K. Haramundanis; E. Miller; A. Girnius.

E Private communication with 1381 Geodetic Survey Squadron, USAF; S. Tischler.

F Private communication with personnel at USC\&GS; B. Stevens.
G Private communication with personnel at U.S. Army Engineers Topographic Laboratories; L. Gambino.

H Private communication with NASA Space Science Data Center; J. Johns; D. Tidwell.

General Station Data Sheet - GEOS-A-Project Manager NASA Headquarters.

REFERENCES

1. Lundquist, C. A., Veis, G., "Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth," Smithsonian Astrophysical Observatory Special Report 200, Vol. 1, 1966.
2. Lerch, F. J., Marsh, J. G., D'Aria, M. D., Brooks, R. L. "Geos I Tracking Station Positions on the SAO Standard Earth (C-5)", GSF C Document X-552-68-70.
3. Lerch, F. J., Doll, C. E., Moss, S. J., O'Neill, B., "The Determination and Comparison of the GRARR MADGAR Site Location," GSF C Document X-552-67-540, October 1967.

[^0]: *Right ascension plus declination measurements.

[^1]: Figure 8. Differences Between Trajectories Obtained from SAO M-1 and NWL 5E-6 Gravity Models - $51 / 4$ Day Arc (Continued)

[^2]: *The GEOS-I GRARR transponder contained two channels denoted A and C which received signals at 2271.9328 MHz and 2270.1328 MHz respectively.

[^3]: ${ }^{*}$ No. 1 and No. 2 refer to the $51 / 4$ day and 1 day orbital arcs described in Section 3.0.

[^4]: *These SAO station positions were derived by using the weighting scheme described in Reference 2, Section 2.

[^5]: *MSL

