

EVALUATION OF THE GODDARD RANGE

 AND RANGE RATE SYSTEM AT ROSMAN BY INTERCOMPARISON WITH GEOS I LONG-ARC ORBITAL SOLUTIONSby
Francis J. Lerch and James G. Marsh
Goddard Space Flight Center
and

Brian O'Neill
Wolf Research and Development Corporation

national aeronautics and space administration - washington, d. C. - June 1969

EVALUATION OF THE GODDARD RANGE AND RANGE RATE SYSTEM AT ROSMAN BY INTERCOMPARISON WITH GEOS I LONG-ARC ORBITAL SOLUTIONS

By Francis J. Lerch and James G. Marsh

Goddard Space Flight Center Greenbelt, Md.
and

Brian O'Neill
Wolf Research and Development Corporation
Applied Sciences Department
Bladensburg, Md.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Abstract

The range measurements of the Goddard Range and Range Rate (GRARR) S-Band Tracking System at Rosman, North Carolina, have been evaluated using long-arc optical reference orbits as a standard. The optical reference orbits were determined from GEOS I flash sequence data sets and some optical passive data from five major geodetic optical tracking networks. The networks and camera types consisted of: the Smithsonian Astrophysical Observatory (SAO) - Baker-Nunn and Geodetic $36^{\prime \prime}$; Goddard Space Flight Center (GSFC) Satellite Tracking and Data Acquisition Network (STADAN) and Special Optical Tracking System (SPEOPT) Minitrack Optical Tracking System (MOTS) $40^{\prime \prime}$ and $24^{\prime \prime}$; United States Air Force (USAF) - PC-1000; and the United States Coast and Geodetic Survey (USC\&GS) -BC-4.

Thirty passes of range and range rate measurements, consisting of all GRARR passes from the GEOS I satellite during two periods in January 1966, were evaluated. The observed range measurements were compared with values calculated from the optically-determined reference orbits. For each pass, a zero-set range bias, timing error, and random error were estimated from the residual differences between the observed and calculated ranges. The GEOS I satellite carried two range and range rate transponder channels, denoted A and C. Twenty-six of the passes evaluated were from the A channel, and four were from the C channel. A summary of the zero-set and timing error estimates is presented in the following table for the two periods considered both separately and combined. These estimates are based on long-arc orbital solutions of approximately three to six days in arc length. The results are supported by several overlapping shorter-arc solutions which vary in arc length from two hours to two days.

Summary of Rosman GRARR Zero-Set Range Bias and Timing Error Estimates. | Period | Transponder
 Channel | Zero-Set Error
 (meters) | | Timing Error
 (m.s.) | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Mean | S.d. | Mean | S.d. | |
| 1 | A | -10.0
 18.1 | 8.8 | -2.4 | 2.4 |
| 2 | A | -5.6 | 11.6 | -1.9 | 5.1 |
| 1 and 2 | A | -7.8
 2 | 10.3 | -2.1 | 4.0 |

CONTENTS

Abstract ii
INTRODUCTION 1
METHOD OF EVALUATION 2
EVALUATION OF THE GRARR MEASUREMENTS 4
RESULTS 9
Rosman GRARR Zero-Set Range Bias and Timing Error Estimates 9
Comparison with Previous Results 9
CONCLUSIONS 10
References 10
Appendix A-Summary of Data Sets and Orbital Solutions 11
Appendix B-Preprocessing of Optical Observations 27
Appendix C-Force Models used in the NONAME Orbit Determination Program 31
Appendix D-Tracking Station Coordinates 37

EVALUATION OF THE GODDARD RANGE AND RANGE RATE SYSTEM AT ROSMAN BY INTERCOMPARISON WITH GEOS I LONG-ARC ORBITAL SOLUTIONS

by
Francis J. Lerch and James G. Marsh
Goddard Space Flight Center
and
Brian \mathbf{O}^{\prime} Neill
Wolf Research and Development Corporation

INTRODUCTION

This report presents the results of an evaluation of the range measurements of the Goddard Range and Range Rate S-Band Tracking System at Rosman, North Carolina, based upon an analysis of GEOS I satellite data. The GEOS I satellite was launched in November 1965 by the National Aeronautics and Space Administration (NASA) as part of the National Geodetic Satellite Program. GEOS I was the first satellite to incorporate all the geodetic instrumentation systems of concern to the agencies participating in the program.

These instrumentation systems consisted of:

- Flashing lights synchronized with an on-board clock
- Doppler transmitters
- Goddard Range and Range Rate (GRARR) S-Band transponder
- Laser reflectors
- Sequential Collation of Range (SECOR) ranging transponder

The principal mean orbital elements for the GEOS I spacecraft are as follows:

Epoch:	January 2, 1966
Apogee height:	2273 kilometers
Perigee height:	1116 kilometers
Eccentricity:	.07
Inclination:	59.4 degrees
Anomalistic period:	120.3 minutes

Data sets recorded during two periods in January 1966 (December 31 to January 5, 1966, and January 11 to 17,1966) were used in this evaluation. During these periods, all GRARR tracking of the GEOS I satellite was performed by the station at Rosman, North Carolina. Thirty passes of range measurements, consisting of all GRARR passes from the GEOS I satellite during these two periods, were evaluated by comparing these measurements with values computed from opticallydetermined reference orbits.

The optical tracking data consisted for this study primarily of flash sequence data* plus some passive reflected sunlight data recorded by five major geodetic optical tracking networks. ${ }^{\dagger}$ The networks and camera types consisted of: the Smithsonian Astrophysical Observatory (SAO) -Baker-Nunn and Geodetic 36"; Goddard Space Flight Center (GSFC) Satellite Tracking and Data Acquisition Network (STADAN) and Special Optical Tracking System (SPEOPT) - Minitrack Optical Tracking System (MOTS) 40' and 24"; United States Air Force (USAF) - PC-1000; and the United States Coast and Geodetic Survey (USC\&GS) - BC-4.

METHOD OF EVALUATION

The range accuracy of the Goddard Range and Range Rate (GRARR) S-Band system was evaluated by comparing the actual measurements with values calculated from reference orbits that best fitted the sets of optical tracking data. Right ascension and declination measurements from camera tracking stations were used to determine the reference orbits, because they are known to be relatively free of biases and systematic errors.

The orbits used for this evaluation were estimated from the Orbit Determination Program NONAME (Reference 1). The following earth and force models were used in this evaluation:

- SAO C-5 Standard Earth ${ }^{\ddagger}$
- SAO M-1 Gravity Model ${ }^{\S}$
- Perturbations due to solar and lunar gravity§
- Perturbations due to solar radiation pressure ${ }^{\S}$

Ten reference orbits were fitted to data sets from two periods in January 1966; the first period was December 31, 1965, to January 5, 1966, and the second was January 11 to January 17,
 was fitted to a medium arc ($1 / 4$ to 6 revolutions). Several of the orbits were fitted to overlapping data sets. This was done to assess the effects that any errors in the orbital solution (i.e. due to uncertainties in solar radiation pressure, the earth's geopotential model, tracking station positions, or other sources) were having on the evaluation of the GRARR system. The majority of the

[^0]observations used to determine the orbits were recorded by observing-stations in North America, and the only observations around the world were passive, i.e. camera observations of the sunlightilluminated satellite when the beacons were not flashing. Summaries of the orbital solutions and root mean squares of fit are given in Tables 1 and 2. A complete description of the orbital solutions and data sets is given in Appendix A.

Table 1

Summary of Orbital Solutions.

Table 2

Root Mean Squares About the Orbital Solutions.

EVALUATION OF THE GRARR MEASUREMENTS

The GRARR measurements normally recorded at the rate of one per second used in this evaluation have been smoothed over two-minute intervals using a sixth-order polynomial; smoothed values were computed every 32 seconds within an interval. The residual differences between the actual smoothed GRARR range measurements and the values computed from the reference orbits were used to obtain estimates of known systematic errors in the system. For the purposes of this evaluation, no observations taken when the elevation of the satellite from the station was less than 20° have been used; however, there did not appear to be any significant deterioration in the quality of the observations at these low elevations. The GRARR passes are summarized in Tables 3 and 4.

Table 3
Summary of GRARR Passes at Rosman from Period 1.

Pass No.	Transponder Channel*	Date	Time	No. of Obs. in Pass		Max. Elevation Angle
				$\mathrm{R} / \dot{\mathrm{R}}^{\dagger}$	Optical ${ }^{\ddagger}$	
652	A	12/31/65	06^{H}	18	18	31.3°
653	A	12/31/65	08^{H}	28	30	$65.4{ }^{\circ}$
664	A	1/1/66	06^{H}	28	78	$36.6{ }^{\circ}$
665	A	1/1/66	$08^{\text {H }}$	32	95	$51.8{ }^{\circ}$
673	A	1/1/66	23^{H}	34	0	$53.5{ }^{\circ}$
676	A	1/2/66	$06^{\text {H }}$	32	106	$43.3{ }^{\circ}$
677	A	1/2/66	08^{H}	28	138	40.2°
685	A	1/2/66	23^{H}	34	10	$46.5{ }^{\circ}$
688	A	1/3/66	06^{H}	30	101	$52.2{ }^{\circ}$
689	A	1/3/66	08^{H}	14	79	$30.1{ }^{\circ}$
697	A	1/3/66	$23^{\text {H }}$	44	0	40.8°
700	C	1/4/66	$06^{\text {H }}$	36	100	62.7°
708	C	1/4/66	$21^{\text {H }}$	48	0	$84.2{ }^{\circ}$
709	C	1/4/66	23^{H}	42	14	$35.8{ }^{\circ}$
712	A	1/5/66	$06^{\text {H }}$	36	66	76.6°

*See Appendix A for a definition of transponder channels.
${ }^{\text {I Smoothed observations occurring every } 32 \text { seconds. }}$
Right ascension plus declination measurements.
The following error model* was fitted to the range residuals:

$$
\begin{equation*}
\Delta R=\Delta B+\Delta t \dot{R}+F(\dot{R})+\frac{3}{\sin E}-9.7, \tag{1}
\end{equation*}
$$

[^1]Table 4
Summary of GRARR Passes at Rosman from Period 2.

Pass No.	Transponder Channel	Date	Time	No. of Obs.in Pass		Max. Elevation Angle
				$\mathrm{R} / \dot{\mathrm{R}}$	Optical	
803	A	1/12/66	20^{H}	68	0	87.7°
804	A	1/12/66	$22^{\text {H }}$	22	0	$33.1{ }^{\circ}$
806	A	1/13/66	$02{ }^{\text {H }}$	44	4	$26.4{ }^{\circ}$
807	A	1/13/66	$04^{\text {H }}$	46	91	83.7°
815	A	1/13/66	$20^{\text {H }}$	46	0	77.2°
818	A	1/14/66	$02{ }^{\text {H }}$	42	0	$30.2{ }^{\circ}$
819	A	1/14/66	$04^{\text {H }}$	32	60	$74.3{ }^{\circ}$
827	C	1/14/66	20^{H}	38	0	67.6°
831	A	1/15/66	$04{ }^{\text {H }}$	48	115	$60.6{ }^{\circ}$
839	A	1/15/66	20^{H}	44	0	$58.8{ }^{\circ}$
842	A	1/16/66	$02{ }^{\text {H }}$	52	81	$40.8{ }^{\circ}$
843	A	1/16/66	$04^{\text {H }}$	50	68	47.9°
850	A	1/16/66	18^{H}	48	0	57.5°
854	A	1/17/66	$02{ }^{\text {H }}$	50	59	$48.3{ }^{\circ}$
855	A	1/17/66	$05^{\text {H }}$	26	81	$37.4{ }^{\circ}$

where
$\Delta R=$ observed range minus calculated range,
$\Delta \mathrm{B}=$ error in the zero-set value of the range (range bias),
$\Delta t=$ an error in timing which may be due to a clock error, a Doppler-sensitive delay in the transponder, or the inverse of the velocity coefficient of the range tracking servo,
$F(\dot{R})=$ error due to the transponder delay,
$E=$ elevation angle of the satellite,
and
$9.7=$ known range-measurement bias in the system at Rosman.

This model was fitted independently to the range residuals from each pass, using the method of least squares to solve for the unknown parameters, ΔB and Δt. The estimates of these parameters are summarized in Tables 5 through 8. The random errors or the standard deviations of the residual differences about the error model fit are summarized in Tables 9 and 10.

Table 5
Summary of Rosman Zero-Set Range Bias Estimates from Period 1.
(meters)

Pass No.	Transponder Channel	Orbital Solution No.					
		1	2	3	4	5	6
$\begin{aligned} & 652 \\ & 653 \end{aligned}$	A	$\begin{array}{r} -16.5 \\ -6.1 \end{array}$					
$\begin{aligned} & 664 \\ & 665 \\ & 673 \end{aligned}$	A A A	-5.0 -2.0 -19.1	$\begin{array}{r} -8.0 \\ 2.8 \\ -13.9 \end{array}$				
$\begin{aligned} & 676 \\ & 677 \\ & 685 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	2.3 0.2 -29.5	6.6 1.4 -24.2		$\begin{array}{r} 2.7 \\ 6.0 \\ -25.4 \end{array}$	4.2 7.4 -20.7	$\begin{aligned} & 5.2 \\ & 4.4 \end{aligned}$
$\begin{aligned} & 688 \\ & 689 \\ & 697 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & -3.3 \\ & -14.9 \\ & -16.0 \end{aligned}$	$\begin{array}{r} 1.0 \\ -14.3 \end{array}$	$\begin{array}{r} -9.4 \\ -12.6 \\ -18.4 \end{array}$	$\begin{aligned} & -2.7 \\ & -8.6 \\ & -11.5 \end{aligned}$	- 1.0	
$\begin{aligned} & 700 \\ & 708 \\ & 709 \end{aligned}$	C C C	$\begin{aligned} & 20.6 \\ & 1.6 .8 \\ & 17.0 \end{aligned}$		$\begin{aligned} & 15.8 \\ & 19.0 \\ & 14.1 \end{aligned}$	21.5		
712	A	- 9.5		-13.0			
Mean S.d.	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} -10.0 \\ 8.8 \end{array}$					
Mean	C	18.1					

Table 6
Summary of Rosman Timing Error Estimates from Period 1. (milliseconds)

Pass No.	Transponder Channel	Orbital Solution No.					
	1	1	2	3	4	5	6
652	A	-2.0					
653	A	1.5					
664	A	-3.9	-5.0				
665	A	1.0	0.9				
673	A	-3.4	-0.6				
676	A	-6.3	-6.1		-6.4	-6.9	-3.5
677	A	-0.2	-0.4		-0.1	-0.3	-2.3
685	A	-3.5	0.4		-3.1	-0.6	
688	A	-5.9	-5.1	-4.8	-6.6	-5.3	
689	A	0.1	0.6	1.4	-0.3	1.2	
697	A	-3.0		-3.4	-3.1		
700	C	-5.4		-4.8	-6.5		
708	C	-2.3		-2.4			
709	C	3.4		2.2			
712	A	-2.8		-2.9			
Mean	A	-2.4					
S.d.	A	2.4					
Mean	C	-1.4					

Table 7
Summary of Rosman Zero-Set Range Bias Estimates from Period 2. (meters)

Pass No.	Transponder Channel	Orbital Solution No.			
		1	2	3	4
$\begin{aligned} & 803 \\ & 804^{*} \end{aligned}$	A	8.7 21.4	$\begin{aligned} & 10.7 \\ & 27.3 \end{aligned}$		
$\begin{aligned} & 806 \\ & 807 \\ & 815 \end{aligned}$	A	$\begin{array}{r} -14.4 \\ -14.8 \\ -3.1 \end{array}$	$\begin{array}{r} -8.6 \\ -15.1 \\ -\quad 0.4 \end{array}$	$\begin{array}{r} -16.9 \\ -1.7 \end{array}$	
$\begin{aligned} & 818 \\ & 819 \\ & 827 \end{aligned}$	A A C	-12.8 10.8 45.3	-7.4 9.1 48.6	-7.1 6.1 44.8	
831 839	A	13.5	10.5	8.1	$\begin{array}{r} 8.8 \\ 10.5 \end{array}$
$\begin{aligned} & 842 \\ & 843 \\ & 850^{*} \end{aligned}$	A A A				-19.3 -13.8 2.1
854 855	A				$\begin{array}{r} -9.1 \\ -18.4 \end{array}$
Mean S.d.	A	-5.6 11.6			

*Passes 804 and 850 were omitted from the mean value calculation since pass 804 had a maximum elevation angle of only 33°, and no optical data were available within approximately 8 hours of these passes.

Table 8
Summary of Rosman Timing Error Estimates from Period 2. (milliseconds)

Pass No.	Transponder Channel	Orbital Solution No.			
		1	2	3	4
$\begin{aligned} & \hline 803 \\ & 804 * \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 5.4 \\ 13.5 \end{array}$	6.1 14.1		
$\begin{aligned} & 806 \\ & 807 \\ & 815 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	-8.8 -2.7 6.4	-9.2 -3.1 7.4	-4.6 5.9	
$\begin{aligned} & 818 \\ & 819 \\ & 827 \end{aligned}$	A A C	-7.8 -1.9 2.0	-8.0 -2.0 3.1	$\begin{array}{r} -8.1 \\ -2.6 \\ 2.0 \end{array}$	
$\begin{array}{r} 831 \\ 839 \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	- 3.9	- 3.2	-2.6	$\begin{array}{r} -3.3 \\ 5.8 \\ \hline \end{array}$
842 843 850*	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$				$\begin{array}{r} -6.3 \\ 0.7 \\ 12.4 \end{array}$
854 855	A				-7.7 -2.6
Mean S.d.	A	-1.9 5.1			

*Passes 804 and 850 were omitted from the mean value calculation since pass 804 had a maximum elevation angle of only 33°, and no optical data were available within approximately 8 hours of these passes.

Table 9
Summary of Random Error Estimates from Period 1. (meters)

Pass No.	Transponder Channel	Orbital Solution No.					
		1	2	3	4	5	6
$\begin{aligned} & 652 \\ & 653 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.6 \end{aligned}$					
$\begin{array}{r} 664 \\ 665 \\ 673 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 3.2 \\ 4.5 \\ 2.6 \\ \hline \end{array}$	$\begin{aligned} & 3.1 \\ & 5.2 \\ & 2.2 \\ & \hline \end{aligned}$				
$\begin{array}{r} 676 \\ 677 \\ 685 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 2.9 \\ 3.2 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 3.5 \\ & 2.3 \end{aligned}$		$\begin{aligned} & 2.9 \\ & 3.8 \\ & 2.5 \end{aligned}$	$\begin{array}{r} 3.0 \\ 4.0 \\ 2.3 \\ \hline \end{array}$	$\begin{aligned} & 2.9 \\ & 3.5 \end{aligned}$
$\begin{aligned} & 688 \\ & 689 \\ & 697 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.1 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.1 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 3.9 \\ & 3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.3 \\ & 3.8 \end{aligned}$	
$\begin{aligned} & 700 \\ & 708 \\ & 709 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 5.8 \\ & 4.5 \\ & 3.1 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.7 \\ & 4.9 \\ & 3.2 \end{aligned}$	6.4		
712	A	6.0		4.8			
Mean	A	3.7					
Mean	C	4.5					

Table 10
Summary of Random Error Estimates from Period 2.
(meters)

Pass No.	Transponder Channel	Orbital Solution No.			
		I	2	3	4
803.		10.7	11.7		
804	A	7.6	7.8		
806	A	3.1	3.3		
807	A	8.6	8.4	7.8	
815	A	6.3	7.1	7.0	
818	A	2.8	2.9	2.9	
819	A	6.7	6.2	5.1	
827	C	7.0	7.6	7.9	
831	A	10.5	9.8	7.9	11.6
839	A				7.3
842	A				5.3
843	A				5.5
850	A	A			
854	A				
855	A	6.6		6.2	
Mean				2.2	

RESULTS

Rosman GRARR Zero-Set Range Bias and Timing Error Estimates

The zero-set range bias estimates for the A channel passes from period 1 had a mean value of $\mathbf{- 1 0 . 0}$ meters and a standard deviation of 8.8 meters, and the three C channel passes had a mean value of 18.1 meters. (See Table 11.) The A channel passes from period 2 had a mean zero-set range bias estimate of -5.6 meters and a standard deviation of 11.6 meters, and the one C channel pass had a zero-set range bias estimate of 45.3 meters. The overall mean zero-set range bias estimates were -7.8 meters with a standard deviation of 10.3 meters for the A channel passes, and 25.0 meters for the \mathbf{C} channel passes.

Table 11
Summary of Rosman GRARR Zero-Set Range Bias and Timing Error Estimates.

Period	Transponder Channel	Zero-Set Error (meters)		Timing Error (m.s.)	
		Mean	S.d.	Mean	S.d.
1	A	-10.0	8.8	-2.4	2.4
	C	18.1		-1.4	
2	A	- 5.6	11.6	-1.9	5.1
1 and 2	A	- 7.8	10.3	-2.1	4.0
	C	25.0		-0.6	

The timing error estimates for some passes were larger than would be expected, and it is probable that other systematic error sources are contributing to these estimates. The A channel passes for period 1 had a mean value of -2.4 milliseconds and the C channel passes had a mean value of -1.4 milliseconds. The A channel passes for period 2 had a mean value of -1.9 milliseconds and the one C channel pass had a timing-error estimate of 2.0 milliseconds. The overall mean timing error estimate for the A channel passes was -2.1 milliseconds with a standard deviation of 4.0 milliseconds.

Comparison with Previous Results

Berbert et al. (Reference 2) analyzed GRARR range data recorded by the GRARR S-Band System and the Goddard Laser Tracking System during a side-by-side tracking experiment with the GEOS I spacecraft. The data used in this analysis were recorded primarily during the period of October-November 1966.

For this analysis the actual range measurements were compared with those calculated from short-arc orbital solutions determined from Laser range data. The Laser orbital solutions were
used as a standard reference in this analysis because they can be used to detect systematic errors in both range and range rate to about 2 meters and $1 \mathrm{~cm} / \mathrm{sec}$ respectively.

Berbert et al. evaluated a selected set of 10 simultaneous GRARR and Laser passes. The average zero-set range bias for the Rosman GRARR relative to the Laser was -5.3 ± 12.4 meters. The average timing difference between the Laser and the GRARR range timing was $\mathbf{- 2 . 1} \pm 1.2$ milliseconds. Zero-set range biases for three of these passes deviated greatly from the norm. A new zero-set range bias of -5.3 ± 2.5 meters was calculated when these passes were omitted.

These results are in good agreement with those obtained from the long-arc optical evaluation of the GRARR range measurements at Rosman.

CONCLUSIONS

The large volume of high-precision optical observations of GEOS I has provided the first opportunity to analyze the GRARR data recorded from the same satellite for systematic errors and biases. For this analysis, definitive long-arc optical orbital solutions determined from the GEOS I flashing lamp and passive data have provided a very accurate standard for estimating these errors.

The GRARRzero-set range bias and timing error estimates for the two satellite transponder channels, A and C, differed significantly. Twenty-six A channel passes analyzed had a mean zero-set range bias error of -7.8 meters with a standard deviation of 10.3 meters and a timing error of -2.1 milliseconds with a standard deviation of 4.0 milliseconds. Four Channel passes analyzed had a mean zero-set range bias error of 25.0 meters and a mean timing error of -0.6 milliseconds. This discrepancy can be explained in part by inaccuracies in the transponder delay curve.

A timing error of up to 2 milliseconds can possibly be attributed to the orbital solution; however, the consistent results obtained from the shorter overlapping solutions indicate that these errors are due to other sources, either the GRARR system itself, or station survey errors, etc. Further analysis and a possible expansion of the error model will be necessary before a complete explanation of these errors is possible.

Goddard Space Flight Center

National Aeronautics and Space Administration
Greenbelt, Maryland, August 16, 1968 311-07-21-01-5I

REFERENCES

1. "Interim Status Report on Program Development and GEOS-A Data Analysis," by Wolf Research and Development Corporation, Bladensburg, Md., for NASA-GSFC, Contract NAS 5-975644A, 55, 71, August 1967.
2. Berbert, J. H., Maresca, P., Norris, P., and Reich, R., 'Intercomparison of Collocated Laser Optical and GRARR Radio Ranging System Tracks on GEOS-A," NASA TM X-55950, September 1967.

Appendix A

Summary of Data Sets and Orbital Solutions

Optical Data

The optically-determined reference orbits that are used as standards in this report were determined from right ascension and declination measurements recorded by STADAN and SPEOPT MOTS $40^{\prime \prime}$ and $24^{\prime \prime}$ cameras, SAO Baker-Nunn and Geodetic $36^{\prime \prime}$ cameras, USAF PC-1000 cameras and United States Coast and Geodetic Survey BC-4 cameras. The locations of most of these cameras are shown in Figures A1 and A2. These figures serve to illustrate that the majority of the tracking stations were located in North America. Because of the station mutual visibility scheduling of the GEOS I spacecraft, flash sequences occurring over North America were observed by many tracking stations simultaneously.

Observations from two periods in January 1966 were used. The two periods were:

1. December 31, 1965 , to January 5, 1966
2. January 11 to January 17, 1966

The complete data sets that were used from each period are summarized in Tables A1 and A2, and Figures A3 and A4. Tables A1 and A2 summarize the observations by network and tracking station, and Figures A3 and A4 indicate the data coverage by time.

Six overlapping orbits were estimated using subsets of data from Period 1, and four overlapping orbits were estimated using the data from Period 2. These orbital solutions are summarized in Tables A3 through A5 and Figures A5 and A6. The lengths of the arcs in these solutions range from two hours to approximately $5-1 / 4$ days in length, and root mean squares about the orbital solutions are given in Table A6.

Details on the passes for Periods 1 and 2 are listed in Tables A7 and A8, and the passes are mapped in Figures A7 through A13.

Figure AI-STADAN, SPEOPT, and USAF camera stations.

Figure $A 2-S A O$ camera stations.

Table A1

Summary of Optical Measurements by Station for Period 1

*Right ascension plus declination measurements.

Table A2

Summary of Optical Measurements by Station for Period 2.

Network	Station	Camera Type	No. of Observations	Type	No. Passes/ No. Flash Sequences
SAO	1OLFAN 1TOKYO 1 VILDO AUSBAK OSLONR IJUPTR AGASSI	Baker-Nunn $"$ $"$ $"$ $"$ " $"$ Geodetic $36 "$	$\begin{array}{r} 6 \\ 4 \\ 8 \\ 8 \\ 1 \\ 84 \\ 63 \end{array}$	Passive 17 I 11 Active $1 *$	3/ 2/ $4 /$ 4/ $1 /$ 2/6 3/5
	TOTAL		174		
SPEOPT	1EDINB 1COLBA 1 BERMD 1 PURIO 1GSFCP 1DENVR IJUM24 1JUM40 1JUBC4	$\begin{gathered} \text { MOTS } 40^{\prime \prime} \\ " \\ " \\ " \\ " \\ " \\ \text { MOTS F24" } \\ \text { MOTS F40" } \\ \text { BC-4 } \end{gathered}$	$\begin{array}{r} 109 \\ 92 \\ 10 \\ 34 \\ 40 \\ 4.2 \\ \mathrm{f} 2 \\ \mathrm{i} 2 \\ 70 \\ 70 \end{array}$	Active	$\begin{aligned} & 4 / 8 \\ & 3 / 7 \\ & 1 / 1 \\ & 3 / 3 \\ & 3 / 3 \\ & 5 / 6 \\ & 5 / 5 \\ & 5 / 5 \\ & 4 / 5 \end{aligned}$
	TOTAL		56t		
STADAN	1 BPOIN 1FTMYR 1 MOJAV ICOLEG 1GFORK 1ROSMA	$\begin{gathered} \text { MOTs } 40^{"} \\ " \\ " \\ " \\ " \\ " \end{gathered}$	$\begin{array}{r} 41 \\ 168 \\ 47 \\ 30 \\ 74 \\ 34 \end{array}$	Active	$\begin{aligned} & t / 4 \\ & 7 / 12 \\ & 3 / 7 \\ & 3 / 3 \\ & 4 / 6 \\ & 2 / 3 \end{aligned}$
	TOTAL		434		
USAF	ANTIGA BEDFRD SEMMES GRDTRK CURACO TRNDAD 'HUNTER JUPRAF ABERDN HOMEST	$P C-1000$	$\begin{array}{r} 52 \\ 85 \\ 650 \\ 74 \\ 21 \\ 21 \\ 12 \\ 73 \\ 74 \\ 108 \end{array}$	Active	$\begin{aligned} & 4 / 4 \\ & 7 / 7 \\ & 5 / 5 \\ & 6 / 6 \\ & 2 / 2 \\ & 2 / 2 \\ & 1 / 1 \\ & 6 / 8 \\ & 6 / 6 \\ & 6 / 8 \end{aligned}$
	TOTAL		580		
US C\&GS	TIMUNS	BC-4	14	Active	1/1
Total of All Observations $=1766$ Total Passive Observations $=27$					14/ Passive 109/139 Active 123 Total Stationlיasses

* The GRARR data coverage is presented in terms of orbit number.

Figure A3-Summary of data coverage for Period 1.

* The GRARR data coverage is presented in terms of orbit number.

Figure A4-Summary of data coverage for Period 2.

Table A3
Summary of Orbital Solutions.

Period 1			
Solution No.	Approximate Arc Length	Time of First Measurement	Time of Final Measurement
1	5-1/4 days	12/31/65 01 hr	01/05/66 06 hr
2	2-1/2 days	01/01/66 01 hr	01/03/66 08 hr
3	2-1/4 days	01/03/66 01 hr	01/05/66 06 hr
4	2 days	01/02/66 06 hr	01/04/66 06 hr
5	1 day	01/02/66 06 hr	01/03/66 08 hr
6	2 hrs	01/02/66 06 hr	01/02/66 08 hr
Period 2			
1	4 days	01/11/66 01 hr	01/15/66 05 hr
2	3 days	01/12/66 03 hr	01/15/66 05 hr
3	2 days	01/13/66 05 hr	$01 / 15 / 6605 \mathrm{hr}$
4	2 days	01/15/66 04 hr	01/17/66 05 hr

Table A4

Subsets of Optical Measurements Used in Orbital Solutions for Period 1.

Network	Station	No. of Observations*				
		Arc 2	Arc 3	Arc 4	Arc 5	Arc 6
SAO	1ORGAN		2			
	1JUPTR	26		26	26	26
	1NATOL	4	2	2	2	
	OSLONR		4			
	A USBAK	2				
	1SHRAZ	2		2	2	
	1SPAIN		4	4		
	1TOKYO	6	2	4	4	
	1VILDO		2			
	AGASSI		10			
	TOTAL	40	26	38	34	26
SPEOPT	1COLBA	71	164	136	71	
	1JUM40	16		16	16	16
	1BERMD	64	40	50	36	10
	1 PURIO		14			
	1DENVR	42	14	28	14	14
	1JUM24	21		21	21	21
	TOTAL	214	232	251	158	61
STADAN	IFTMYR	82	42	54	54	12
	IBPOIN		46	26		
	1 GFORK	26	9	9	9	
	1MOJAV	25		25	25	25
	TOTAL	133	97	114	88	37
USAF	HUNTER	59	14	47	47	23
	SWANIS	14	14	14	14	
	GRDTRK		7	7		
	ANTIGA	12	14	14		
	SEMMES	50		36	36	36
	CURACO	26	28	40	26	12
	HOMEST	66	28	38	24	24
	JUPRAF	17		17	17	17
	BEDFRD		22	14		
	ABERDN		50	14		
	TOTAL	244	177	241	164	112
Total of All Observations						
		631	532	644	444	236

*For Arc 1, refer to Table A1.

Table A5
Subsets of Optical Measurements Used in Orbital Solutions for Period 2.

Network	Station	No. of Observations			
		Arc 1	Arc 2	Arc 3	Arc 4
SAO	1OLFAN	6	4		
	1 TOKYO	4	2	2	
	1JUPTR				84
	1 VILDO	8	6	6	2
	AUSBAK	6	4	4	2
	AGASSI	63	46	12	12
	OSLONR				1
	TOTAL	87	62	24	101
SPEOPT	1EDINB	72	48	20	65
	ICOLBA	92	92	92	38
	IBERMD				10
	1 PURIO	20	14	14	14
	1GSFCP	40	40	26	
	1DENVR	56	56	56	26
	1JUM24	22	22	22	54
	1 JUM40	28	28	28	56
	1 JUBC 4	38	38	38	41
	TOTAL	368	338	296	304
STADAN	18POIN	37	37	18	8
	1FTMYR	103	103	75	78
	1 MOJAV	52	52	52	42
	1COLEG	17	17	17	13
	1GFORK	40	14	14	34
	1ROSMA	22			12
	TOTAL	271	223	176	187
USAF	ANTIGA	38	38	24	24
	BEDFRD	58	58	26	27
	SEMMES	50	26		10
	GRDTRK	46	34	34	38
	CURACO	21	21	21	10
	TRNDAD	11	11		10
	HUNTER	12			
	JUPRAF	38	38	38	53
	ABERDN	68	42	14	20
	HOMEST	51	51	51	69
	TOTAL	393	319	208	261
USC \&GS	TIMINS	14	14		
Total of All Observations		1133	956	704	853

Figure A5-Summary of orbital solutions for Period 1.

Figure A6-Summary of orbital solutions for Period 2.

Table A6

Root Mean Squares About the Orbital Solutions.

Period 1		
Orbital Solution	No. of Obs.	Rms of Fit (secs. of arc)
1	1057	3.08
2	631	2.58
3	532	2.74
4	644	2.45
5	444	2.33
6	236	2.17
	Period 2	
1	1133	3.16
2	956	2.94
3	704	2.80
4	853	2.80

Table A7

Summary of GRARR Passes at ROSRAN from Period 1.

Pass No.	Transponder Channel	Date	Time	No. of Obs. in Pass		Max. Elevation Angle
				$\mathrm{R} / \dot{R}^{\text {R }}$	Optical	
$\begin{aligned} & 652 \\ & 653 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 12 / 31 / 65 \\ & 12 / 31 / 65 \end{aligned}$	$\begin{aligned} & 06^{\mathrm{H}} \\ & 08^{\mathrm{H}} \end{aligned}$	$\begin{aligned} & 18 \\ & 28 \end{aligned}$	$\begin{aligned} & 18 \\ & 30 \end{aligned}$	$\begin{aligned} & 31.3^{\circ} \\ & 65.4^{\circ} \end{aligned}$
$\begin{aligned} & 664 \\ & 665 \\ & 673 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 / 1 / 66 \\ & 1 / 1 / 66 \\ & 1 / 1 / 66 \end{aligned}$	$\begin{aligned} & 06^{\mathrm{H}} \\ & 08^{\mathrm{H}} \\ & 23^{\mathrm{H}} \end{aligned}$	$\begin{aligned} & 28 \\ & 32 \\ & 34 \end{aligned}$	$\begin{array}{r} 78 \\ 95 \\ 0 \end{array}$	$\begin{aligned} & 36.6^{\circ} \\ & 51.8^{\circ} \\ & 53.5^{\circ} \end{aligned}$
$\begin{aligned} & 676 \\ & 677 \\ & 685 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	1/2/66 $1 / 2 / 66$ $1 / 2 / 66$	$\begin{aligned} & 06^{\mathrm{H}} \\ & 08^{\mathrm{H}} \\ & 23^{\mathrm{H}} \end{aligned}$	$\begin{aligned} & 32 \\ & 28 \\ & 34 \end{aligned}$	$\begin{array}{r} 106 \\ 138 \\ 10 \end{array}$	$\begin{aligned} & 43.3^{\circ} \\ & 40.2^{\circ} \\ & 46.5^{\circ} \end{aligned}$
$\begin{aligned} & 688 \\ & 689 \\ & 697 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$1 / 3 / 66$ $1 / 3 / 66$ 1/3/66	$\begin{aligned} & 06^{\mathrm{H}} \\ & 08^{\mathrm{H}} \\ & 23^{\mathrm{H}} \end{aligned}$	$\begin{aligned} & 30 \\ & 14 \\ & 44 \end{aligned}$	$\begin{array}{r} 101 \\ 79 \\ 0 \end{array}$	$\begin{aligned} & 52.2^{\circ} \\ & 30.1^{\circ} \\ & 40.8^{\circ} \end{aligned}$
$\begin{aligned} & 700 \\ & 708 \\ & 709 \end{aligned}$	C C C		$\begin{aligned} & 06^{\mathrm{H}} \\ & 21^{\mathrm{H}} \\ & 23^{\mathrm{H}} \end{aligned}$	$\begin{aligned} & 36 \\ & 48 \\ & 42 \end{aligned}$	$\begin{array}{r} 100 \\ 0 \\ 14 \end{array}$	$\begin{aligned} & 62.7^{\circ} \\ & 84.2^{\circ} \\ & 35.8^{\circ} \end{aligned}$
712	A	1/5/66	06^{H}	36	66	76.6°

Table A8
Summary of GRARR Passes at ROSRAN from Period 2.

Pass	Transponder Channel	Date	Time	No. of Obs. in Pass		Max. Elevation Angle
No.				$\mathrm{R} / \dot{\mathrm{R}}$	Optical	
803	A	1/12/66	$20^{\text {H }}$	68	0	87.7°
804	A	1/12/66	$22^{\text {H }}$	22	0	$33.1{ }^{\circ}$
806	A	1/13/66	$02{ }^{\text {H }}$	44.	4	$26.4{ }^{\circ}$
807	A	1/13/66	04^{H}	46	91	$83.7{ }^{\circ}$
815	A	1/13/66	20^{H}	46	0	77.2°
818	A	1/14/66	$02{ }^{\text {H }}$	42	0	$30.2{ }^{\circ}$
819	A	1/14/66	$04^{\text {H }}$	32	60	$74.3{ }^{\circ}$
827	C	1/14/66	$20^{\text {H }}$	38	0	67.6°
831	A	1/15/66	$04^{\text {H }}$	48	115	$60.6{ }^{\circ}$
839	A	1/15/66	$20^{\text {H }}$	44	0	$58.8{ }^{\circ}$
842	A	1/16/66	$02{ }^{\text {H }}$	52	81	$40.8{ }^{\circ}$
843	A	1/16/66	$04^{\text {H }}$	50	68	47.9°
850	A	1/16/66	$18^{\text {H }}$	48	0	$57.5{ }^{\circ}$
854	A	1/17/66	$02{ }^{\text {H }}$	50	59	$48.3{ }^{\circ}$
855	A	1/17/66	$05^{\text {H }}$	26	81	$37.4{ }^{\circ}$

Figure A7-GRARR passes, December 31, 1965, and January 1, 1966.

Figure A8—GRARR passes, January 2 and 3, 1966.

Figure A9-GRARR passes, January 4 and 5, 1966.

Figure Al0-GRARR passes, January 11 and 12, 1966.

Figure All-GRARR passes, January 13 and 14, 1966.

Figure Al2-GRARR passes, January 15 and I6, 1966.

Figure Al3-GRARR passes, January 17, 1966.

GRARR Data-

The Goddard Range and Range Rate (GRARR) Tracking System* was designed as a highprecision tracking system able to accurately determine the range and radial velocity of a spacecraft by measuring phase shift and Doppler. Each station uses an S-band and a VHF system. Only the S-band system was used in this evaluation. For use with the S-band system, a 3-channel ranging transponder may be installed in the spacecraft. The GEOS I satellite transponder contained two channels, referred to as the A and C channels, which received signals at 2271.9328 MHz and 2270.1328 MHz respectively.

Range and range rate measurements for the GEOS I spacecraft were made and recorded at the rate of one per second. The GRARR observations used in this evaluation had been smoothed using a sixth-order polynomial smoothing program. The data were smoothed over two-minute periods, and smoothed values were calculated at 32 -second intervals within these periods.

The GRARR passes evaluated in this report are summarized in Tables A7 and A8. These tables indicate the date and time of each pass, number of GRARR observations, number of simultaneous optical observations, maximum elevation of pass, and the satellite transponder channel. The geometry of these passes is represented in Figures A7 through A13.

[^2]
Appendix B

Preprocessing of Optical Observations

Preprocessing of Optical Data

The first step in the processing of optical observations (and one usually performed by the observing source) consists of developing a plate or film and identifying thereon the image or images of the satellite and the images of several reference stars whose right ascensions and declinations are well known. The initial measurements both of satellite images and of reference stars consist of linear rectangular coordinates. From the knowledge of the spherical coordinates of the reference stars, the right ascensions and declinations of the satellite images may be calculated. These coordinates as received by the preprocessor may be referred to the mean equator and equinox of date, true equator and equinox of date, or mean equator and equinox of some standard epoch.

Preprocessing includes, for example in the case of the GEOS I SAO Baker-Nunn data, updating the observations from a mean equinox and equator of 1950.0 to the true equinox and equator of date through the luni-solar precession and nutation effects, the corrections for planetary aberration, and the transformation of the A-S (SAO atomic time) time tag to UTC time. It is necessary to know UT1 time when the angle between Aries and the Mean Greenwich Meridian is required. UT1 is then calculated on the basis of the differences (UT1-UTC) as published by the U. S. Naval Observatory. In the case of active flash data, where the time is recoverable to better than 100 microseconds through the use of APL-published corrections to the satellite on-board clock,* the time tag is shifted to correspond to the center of the photographic flashing light image. This latter adjustment corresponds to a shift of 0.5 millisecond, which is equivalent to approximately 4.0 meters of satellite position.

Currently, the preprocessor transforms all right ascensions and declinations to the true equator and equinox of the epoch of the observations being processed. If the observations were originally referred to the mean equator and equinox of a particular epoch, it is necessary only to precess from that epoch to the dates of the observations. However, if they were referred to the true equator and equinox of a particular epoch, it is necessary first to transform them to the mean equator and equinox of that same epoch and then precess to the epoch of the observation.

Finally, a transformation must be made from the mean equator and equinox of the epoch of the observations to the true equator and equinox of the epoch of the observations.

[^3]
Nutation

The transformation from the true equator and equinox of date to the mean equator and equinox of date is

$$
\begin{equation*}
Y=N X \tag{B1}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathrm{Y}=\left[\begin{array}{ll}
\cos \delta_{\mathrm{m}} & \cos a_{\mathrm{m}} \\
\cos \delta_{\mathrm{m}} & \sin a_{\mathrm{m}} \\
\sin \delta_{\mathrm{m}} &
\end{array}\right], \tag{B2}\\
\mathrm{X}=\left[\begin{array}{ll}
\cos \delta_{\mathrm{T}} & \cos \alpha_{\mathrm{T}} \\
\cos \delta_{\mathrm{T}} & \sin \alpha_{\mathrm{T}} \\
\sin \delta_{\mathrm{T}} &
\end{array}\right], \tag{B3}\\
\mathrm{N}=\left[\begin{array}{ccc}
1 & +\Delta \psi \cos \epsilon_{\mathrm{m}} & +\Delta \psi \sin \epsilon_{\mathrm{m}} \\
-\Delta \psi \cos \epsilon_{\mathrm{m}} & 1 & +\Delta \epsilon \\
-\Delta \psi \sin \epsilon_{\mathrm{m}} & -\Delta \epsilon & 1
\end{array}\right], \tag{B4}
\end{gather*}
$$

where
$a_{\mathrm{m}}, \delta_{\mathrm{m}}=$ right ascension and declination referred to mean equator and equinox of date,
$\alpha_{\mathrm{T}}, \delta_{\mathrm{T}}=$ right ascension and declination referred to true equator and equinox of date,
$\epsilon_{\mathrm{m}}=$ mean obliquity of date,
$\Delta \psi=$ nutation in longitude, and
$\Delta \epsilon=$ nutation in obliquity.

The inverse transformation is simply:

$$
\begin{equation*}
\mathrm{X}=\mathrm{N}^{-1} \mathrm{Y}=\mathrm{N}^{\mathrm{T}} \mathrm{Y} . \tag{B5}
\end{equation*}
$$

Precession

The transformation from the mean equator and equinox of 1950.0 to the mean equator and equinox of an arbitrary epoch $\mathfrak{t l}$ is

$$
\begin{equation*}
\mathrm{Y}=\mathrm{PX}, \tag{B6}
\end{equation*}
$$

where

$$
\begin{align*}
& Y=\left[\begin{array}{ll}
\cos \delta_{t 1} & \cos \alpha_{t 1} \\
\cos \delta_{t 1} & \sin \alpha_{t 1} \\
\sin \delta_{t 1}
\end{array}\right], \tag{B7}\\
& X=\left[\begin{array}{ll}
\cos \delta_{1950.0} & \cos \alpha_{1950.0} \\
\cos \delta_{1950.0} & \sin \alpha_{1950.0} \\
\sin \delta_{1950.0}
\end{array}\right], \tag{B8}
\end{align*}
$$

and

$$
P=\left[\begin{array}{ccc}
(\cos z \cos \theta \cos \zeta-\sin z \sin \zeta) & (-\cos z \cos \theta \sin \zeta-\sin z \cos \zeta) & (-\cos z \sin \theta) \tag{B9}\\
(\sin z \cos \theta \cos \zeta+\cos z \sin \zeta) & (-\sin z \cos \theta \sin \zeta+\cos z \cos \zeta) & (-\sin z \sin \theta) \\
(\sin \theta \cos \zeta) & (-\sin \theta \sin \zeta) & (\cos \theta)
\end{array}\right]
$$

The inverse transformation is

$$
\begin{equation*}
X=P^{-1} Y=P^{T} Y \tag{B10}
\end{equation*}
$$

Since the expressions for z, θ, ζ are tied to 1950.0 as an epoch, the precession between two different epochs, neither of which is 1950.0 , must be performed in two steps, using 1950.0 as an intermediary epoch.

Appendix C

Force Models used in the NONAME Orbit Determination Program

Force Models

The data reduction program in its present form incorporates four force models. These are:

1. The earth's gravitational field
2. The solar and lunar gravitational perturbations
3. Solar radiation pressure
4. Atmospheric drag.

The program is designed such that the gravitational coefficients and pertinent physical characteristics of satellites, such as reflectivity, cross-sectional area, mass, and drag coefficient, can be simply changed through card input or block data statement.

The Earth's Gravitational Field

The formulation of the geopotential used is:

$$
\begin{equation*}
U=\frac{G M}{r}\left[1+\sum_{n=2}^{k} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n} P_{n}^{m}(\sin \phi)\left(C_{r m} \cos m l+S_{n m} \sin m l\right)\right] \tag{C1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{G} & =\text { the universal gravitational constant, } \\
\mathrm{M} & =\text { the mass of the earth, } \\
\mathrm{r} & =\text { the geocentric satellite distance, } \\
\mathrm{a} & =\text { the earth's mean equatorial radius, } \\
\phi & =\text { the sub-satellite geocentric latitude, } \\
\lambda & =\text { the sub-satellite east longitude measured from Greenwich, } \\
\mathrm{P}_{\mathrm{n}}^{\mathrm{m}}(\sin \phi) & =\text { the associated spherical harmonic of degree } \mathrm{n} \text { and order } \mathrm{m} .
\end{aligned}
$$

The design of the potential function requires that denormalized gravitational coefficients $C_{n, m}$ and $S_{n, m}$ be used. The program is presently capable of accepting coefficients up to (20,20) or any subset of these.

The SAO M-1 earth gravitational model (Reference C1) modified by the GEOS I resonant harmonics ($\bar{C}_{13,12}, \overline{\mathrm{~S}}_{13,12}, \overline{\mathrm{C}}_{14,12}, \overline{\mathrm{~S}}_{14.12}, \overline{\mathrm{C}}_{15,12}, \overline{\mathrm{~S}}_{15.12}$) (Reference C2) is listed in Table C1. These coefficients have been used extensively in the NONAME orbit determination program for the reduction of GEOS I optical and electronic data. The same data sets have been reduced using various other gravity models. An intercomparison of the results can be found in Reference C3.

Table C1
SAO M-1 Harmonic Coefficients (Normalized).

n	m	$\overline{\mathrm{C}} \times 10^{6}$	$\overline{\mathrm{S}} \times 10^{6}$	n	m	$\overline{\mathrm{C}} \times 10^{6}$	$\bar{s} \times 10^{6}$
2	0	-484.1735		8	2	0.026	0.039
2	1			8	3	- 0.037	0.004
2	2	2.379	-1.351	8	4	- 0.212	-0.012
3	0	0.9623		8	5	- 0.053	0.118
3	1	1.936	0.266	8	6	- 0.017	0.318
3	2	0.734	-0.538	8	7	- 0.0087	0.031
3	3	0.561	1.620	8	8	- 0.248	0.102
4	0	0.5497		9	0	0.0122	
4	1	- 0.572	-0.469	9	1	0.117	0.012
4	2	0.330	0.661	9	2	- 0.0040	0.035
4	3	0.851	-0.190	10	00	0.0118	
4	4	- 0.053	0.230	10	01	0.105	-0.126
5	0	0.0633		10	02	- 0.105	-0.042
5	1	- 0.079	-0.103	10	03	- 0.065	0.030
5	2	0.631	-0.232	10	04	- 0.074	-0.111
5	3	- 0.520	0.007	11	00	- 0.0630	
5	4	- 0.265	0.064	11	01	- 0.053	0.015
5	5	0.156	-0.592	12	00	0.0714	
6	0	- 0.1792		12	01	- 0.163	-0.071
6	1	- 0.047	-0.027	12	02	- 0.103	-0.0051
6	2	0.069	-0.366	12	12	- 0.031	0.0008
6	3	- 0.054	0.031				
6	4	- 0.044	-0.518	13	00	0.0219	
6	5	- 0.313	-0.458	13	12	- 0.06769	0.06245
6	6	- 0.040	-0.155	13	13	- 0.059	0.077
7	0	0.0860					
7	1	0.197	0.156			$\begin{array}{ll}- & 0.0332 \\ - & 0.015\end{array}$	
7	2	0.364	0.163		11	$\begin{array}{ll}-\quad 0.015 \\ & 0.0002\end{array}$	0.0053 -0.0001
7	3	0.250	0.018		112	0.0002 0.00261	-0.0001
7	4	- 0.152	-0.102	14	14	-0.00261	-0.02457
7	5	0.076	0.054	14	14	- 0.014	-0.003
7	6	- 0.209	0.063				
7	7	0.055	0.096			- 0.0009	-0.0018
				15	12	- 0.07473	-0.01026
8	0	0.0655		15	13	- 0.058	-0.046
8	1	- 0.075	0.065	15	14	0.0043	-0.0211

The normalized coefficients ($\bar{C}_{n, m}, \bar{S}_{n, m}$) are related to the denormalized coefficients $\left(C_{n, m}, S_{n, m}\right)$ as indicated below:

$$
\left.\begin{array}{rl}
C(n, m)= & {[(n-m)!(2 n+1) k /(n+m)!]^{1 / 2} \bar{C}(n, m)} \tag{C2}\\
S(n, m)= & {[(n-m)!(2 n+1) k /(n+m)!]^{1 / 2} \overline{\mathbf{S}}(n, m)}
\end{array}\right\} ;
$$

The transformation of the geopotential in earth-fixed coordinates (r, ϕ, λ) to gravitational accelerations in inertial coordinates (x, y, z) is accomplished as follows:

$$
\begin{equation*}
\ddot{x}_{\oplus}=\frac{\partial u}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \phi} \frac{\partial \phi}{\partial x}+\frac{\partial u}{\partial \lambda} \frac{\partial \lambda}{\partial \mathbf{x}} ; \tag{C3}
\end{equation*}
$$

similarly for

$$
\ddot{y}_{\oplus}, \ddot{z}_{\oplus},
$$

where the subscript " ${ }^{9}$ " denotes accelerations due to the earth's field.

Solar and Lunar Gravitational Perturbations

The perturbations caused by a third body, e.g. the sun or moon, on a satellite orbit are treated by defining a disturbing function R (Reference $C 4$) which can be treated as the potential function U. For the solar perturbation, R_{\odot} takes the form

$$
\begin{equation*}
R_{\odot}=\frac{G M m_{\odot}}{r_{\Theta}}\left[\left(1-\frac{2 r}{r_{\odot}} S+\frac{r^{2}}{r_{\odot}^{2}}\right)^{-1 / 2}-\frac{r S}{r_{\odot}}\right], \tag{C4}
\end{equation*}
$$

where

$$
\mathrm{S}=\cos \left(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{r}}_{\odot}\right)
$$

$\mathrm{m}_{\odot}=$ the mass of the sun in earth masses,
$\vec{r}_{\odot}=$ the geocentric position vector of the sun,
$r_{\odot}=$ the geocentric distance to the sun,
$\vec{r}=$ the geocentric position vector of the satellite,
$r=$ the geocentric distance to the satellite,
$\mathrm{G}=$ the universal gravitational constant, and
$\mathrm{m}=$ the mass of the earth.

The acceleration of the satellite due to the sun is then

$$
\begin{equation*}
\ddot{\mathbf{x}}_{\odot}=\frac{\partial R_{\odot}}{\partial r} \frac{\partial \tau}{\partial \mathbf{x}}+\frac{\partial R_{\odot}}{\partial \lambda} \frac{\partial \lambda}{\partial \mathbf{x}}+\frac{\partial R_{\odot}}{\partial \phi} \frac{\partial \phi}{\partial \mathbf{x}} ; \tag{C5}
\end{equation*}
$$

similarly for

$$
\ddot{y}_{\odot}, \ddot{z}_{\odot},
$$

where ϕ and λ are the latitude and longitude of the satellite respectively. The lunar perturbations are found from Equation C4 by substituting the lunar mass and distance for those of the sun.

The lunar and solar ephemerides are computed internal to the program. These positions are computed at ten equal intervals over each five-day period, and are least-squares-fitted to a fourthorder polynomial in time about the midpoint of the five-day period. The positions of these bodies are then determined at each data point by evaluating the polynomial at the observation time.

Solar Radiation Pressure

The acceleration acting on a satellite due to solar radiation pressure is formulated as follows (Reference C5)

$$
\begin{equation*}
\ddot{x}_{R A D}=-\frac{\mathrm{AP}_{\mathrm{O}}}{\mathrm{~m}} \gamma \nu \mathrm{~L}_{\mathrm{x}} ; \tag{C6}
\end{equation*}
$$

similarly for

$$
\ddot{y}_{\text {RAD }}, \ddot{z}_{\text {RAD }},
$$

where
$\hat{\mathrm{L}}=$ the inertial unit vector from the geocenter to the sun and has components $\mathrm{L}_{\mathrm{x}}, \mathrm{L}_{\mathrm{y}}, \mathrm{L}_{\mathrm{z}}$,
$\mathrm{A}=$ the cross-sectional area of the satellite,
$\mathrm{m}=$ the satellite mass,
$\gamma=$ a factor depending on the reflective characteristics of the satellite,
$\nu=$ the eclipse factor such that:
$\nu=\left\{\begin{array}{l}0 \text { when satellite is in earth's shadow } \\ 1 \text { when satellite is illuminated by the sun, }\end{array}\right.$
$P_{\odot}=$ the solar radiation pressure in the vicinity of the earth,

$$
4.5 \times 10^{-6} \frac{\text { Newton }}{\mathrm{m}^{2}}
$$

At present, it is assumed that the satellite is specularly reflecting with reflectivity ρ, and thus

$$
\begin{equation*}
\gamma=(1+\rho) . \tag{C7}
\end{equation*}
$$

The vector \hat{L} and the eclipse factor are determined from the solar ephemeris subroutine previously described and from the satellite ephemeris, and involve the approximation of a cylindrical earth shadow.

Atmospheric Drag

The atmospheric decelerations are computed as follows:

$$
\ddot{x}_{\mathrm{DRAG}}=\frac{\rho \mathrm{C}_{\mathrm{D}} \mathrm{Avv}_{\mathrm{x}}}{2 \mathrm{~m}}
$$

similarly for

$$
\begin{equation*}
\ddot{\mathrm{y}}_{\mathrm{DRAG}}, \ddot{z}_{\mathrm{DRAG}} \tag{C8}
\end{equation*}
$$

where

$$
\rho=\text { the ambient atmospheric density }
$$

$C_{D}=$ the satellite drag coefficient, $\mathrm{A}=$ the projected area of the satellite on a plane perpendicular to direction of motion, $\mathrm{m}=$ the satellite mass.

The velocity vector \vec{v}, given in inertial coordinates by

$$
\begin{equation*}
\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k} \text {. } \tag{C9}
\end{equation*}
$$

can be chosen to be either the velocity relative to the atmosphere, an assumption which implies that the atmosphere rotates with the earth; or the inertial velocity, an assumption which implies that the atmosphere is static. Presently, the former assumption is made.

The density, ρ, is computed from the 1962 U.S. Standard Atmosphere.

REFERENCES

1. Lundquist, C. A., and Veis, G., ''Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth," Smithsonian Astrophysical Observatory Special Report No. 200, Vol. 1, 1966.
2. Köhnlein, W., "The Earth's Gravitational Field as Derived from a Combination of Satellite Data with Gravity Anomalies," prepared for XIV General Assembly, International Union of Geodesy and Geophysics, International Association of Geodesy, October 1967.
3. Lerch, F. J., Marsh, J. G., and O'Neill, B., "Gravity Model Comparison Using GEOS I LongArc Orbital Solutions," NASA Technical Note D-5035, August 1968.
4. Kozai, Y., Smithsonian Astrophysical Observatory Special Report No. 22, pp. 7-10.
5. Koelle, H., Handbook of Astronautical Engineering, New York: McGraw-Hill, 1961, pp. 8-33.

Appendix D

Tracking Station Coordinates

Datum Parameters and Station Coordinates

For the purpose of long-arc satellite data reduction and intercomparison, all GEOS I participating tracking stations have been transformed to a common datum. The common datum selected is the SAO Standard Earth C-5 Model (Reference D1), in which the Baker-Nunn station positions are used as the controlling stations for all other stations to be transformed. The semimajor axis and flattening coefficient for the SAO C-5 Earth Model are 6378165 meters and 298.25 respectively. Descriptions and formulations to effect the transformations from major and isolated datums are presented in Reference D2. The transformation of local datum station coordinates to a common center-of-mass reference system is important to perform, since the datum shifts are quite large. For example, on the North American Datum the center-of-mass shift to the C-5 Standard Earth is approximately 250 meters. The center-of-mass coordinates of the SAO C-5 Baker-Nunn stations are assessed by SAO as having approximately

20-meter accuracy.

In order to effect any transformation, the parameters of the original datums must be known as well as the geodetic latitude, longitude, and height. Table D1 provides a listing of the original datums and their parameters on which the stations were originally surveyed.

Tables D2 through D11 list alternately the original surveyed ellipsoidal positions and the SAO C-5 ellipsoidal positions for over 100 GEOS I tracking stations that have been used in the long-arc intercomparison effort. These tables contain symbols designating the source of original station coordinates. The symbols are defined under "Sources" (p. 48), with a list of source information. The C-5 positions for 1TANAN and MADGAR (Reference D3) have been derived by the station estimation technique contained in the Orbit Determination Program NONAME. Tables D12 through D21 provide a listing of the proper station names from which the six-letter designations have been derived.

Table DI

Parameters of Original Datums.

Datum Name	Semi-Major Axis (meters)	$1 / \mathrm{f}$
North American (N.A.)	6378206.4	294.9787
European	6378388.0	297.0
Tokyo	6377397.2	299.1529
Argentinean	6378388.0	297.0
Mercury	6378166.0	298.3
Madagascar	6378388.0	297.0
Australian Nat'l.	6378160.0	298.25
Old Hawaiian	6378206.4	294.9787
Indian	6377276.3	300.8017
Arc (Cape)	6378249.1	293.4663
1966 Canton ASTRO	6378388.0	297.0
Johnston Island		
1961	6378388.0	297.0
Midway ASTRO 1961	6378388.0	297.0
Navy IBEN ASTRO		
1947	6378206.4	294.9787
Provisional DOS	6378388.0	297.0
ASTRO 1962, 65		
Allen Sodano Lt.	6378388.0	297.0
1966 SECOR ASTRO	6378388.0	297.0
Viti Levu I916	6378249.1	293.4663
Corrego Alegre	6378206.4	294.9787
USGS 1962 ASTRO	6378206.4	294.9787
Berne	6377397.2	299.1528

SAO - Optical - Source A.*

[^4]Table D3
STADAN - Optical - Source B.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
1BPOIN	1021	$38^{\circ} 25^{\prime} 49^{\prime} .63$	$282^{\circ} 54^{+} 48^{\prime \prime} .23$	5	N.A.
		382549.44	2825448.65	-50	C-5
1FTMYR	1022	263251.89	2780803.93	19	N.A.
		263253.08	2780803.80	-42	C-5
100MER	1024	-31 2330.07	1365211.05	152	Australian
		-3123 26.96	1365214.25	148	C-5
1QUITO	1025	- 03728.00	2812514.81	3649	N.A.
		- 03722.63	2812515.23	3554	C-5
1LIMAP	1026	-114644.43	2825058.23	155	N.A.
		-11 4637.56	2825058.86	34	C-5
ISATAG	1028	-33 0907.66	2891951.35	922	N.A.
		-33 0858.76	2891952.59	705	C-5
1MOJAV	1030	351948.09	2430602.73	905	N.A.
		351947.57	2430559.18	874	C-5
1JOBUR	1031	-25 5258.86	274227.93	1530	Arc (Cape)
		-25 5302.70	274225.41	1546	C-5
1NEWFL	1032	474429.74	3071643.37	104	N.A.
		474428.73	3071646.67	58	C-5
1 COLEG	1033	645219.72	2120947.17	162	N.A.
		645217.78	2120937.29	139	C-5
1GFORK	1034	480121.40	2625921.56	253	N.A.
		480120.81	2625919.55	200	C-5
1WNKFL	1035	512644.12	3591814.62	62	European
		512640.67	3591808.35	76	C-5
1ROSMA	1042	351206.93	2770741.01	914	N.A.
		351207.03	2770740.81	857	C-5
1 TANAN	1043	-19 0027.09	471800.46	1377	Tananarive
		-19 0033.26	471758.89	1355	C-5

Table D4
STADAN $-R / \dot{R}-$ Source B.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters	Datum
MADGAR	1122	$-19^{\circ} 01^{\prime} 13!32$	$47^{\circ} 18^{\prime} 09!45$	1403	Tananarive
ROSRAN	1126	-190119.41	471807.96	1382	C-5
		351145,05	2770726.23	880	N.A.
CARVON	1152	-24541145.15	2770726.02	823	C-5
		-245412.29	1134255.06	38	Australian
		1134258.54	10	C-5	

Table D5

Navy TRANET - Doppler - Source C.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
LASHAM	2006	$51^{\circ} 11^{\prime} 10^{\prime} .62$	$358^{\circ} 58^{\prime} 30^{\prime} \cdot 51$	182	European
		511107.12	3585824.25	196	C-5
SANHES	2008	-23 1301.74	3140750.59	608*	Corrego
					Alegre
		-23 1301.74	3140750.59	608	C-5
PHILIP	2011	145857.79	1200425.98	8	Tokyo
		145916.42	1200421.61	-70	C-5
SMTHFD	2012	-34 4031.31	1383912.39	39	Australian
		-34 4028.16	1383915.66	31	C-5
MISAWA	2013	404304.63	1412004.69	-10	Tokyo
		404314.63	1411951.45	38	C-5
ANCHOR	2014	611701.98	2101037.46	61	N.A.
		611659.60	2101028.60	44	C-5
TAFUNA	2017	-14 1950.19	1891713.96	$6 *$	$\begin{aligned} & \text { USGS } \\ & 1962 \text { ASTRO } \end{aligned}$
		-14 1950.19	1891713.96	6	C-5
THULEG	2018	763218.62	2911346.72	43	N.A.
		763220.72	2911351.07	-7	C-5
MCMRDO	2019	-775051.00	1664025.00	-43	Mercury
		-775050.58	1664035.02	-29	C-5
WAHIWA	2100	213126.86	2020000.63	380	Old Hawaiian
		213114.95	2020009.83	368	C-5
LACRES	2103	321643.75	2531448.25	1201	N.A.
		321643.91	2531445.34	1162	C-5
LASHM2	2106	511112.32	3585830.21	187	European
		511108.82	3585823.95	201	C-5
APLMND	2111	390947.83	2830611.07	146	N.A.
		390947.59	2830611.52	90	C-5
PRETOR	2115	-25 5646.09	282053.00	1417	European
		-25 5649.97	282050.67	1595	C-5
SHEMYA	2739	524301.52	1740651.43	44	N.A.
		524256.52	1740644.17	89	C-5
BELTSV	2742	390139.46	2831027.25	50	N.A.
		390139.23	2831027.72	-5	C-5
STNVIL	2745	332531.57	2690910.70	44	N.A.
		332531.76	2690909.66	-10	C-5

*MSL.

Table D6

Air Force - Optical - Source I.*

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
E	ANTIGA	3106	17008'51'68	298 ${ }^{\circ} 12^{\prime} 37!41$	7	N.A.
			170853.88	2981239.19	-42	C-5
	GRNVLE	3333	332848.97	2685949.17	45	N.A.
			332849.15	2685948.12	-9	C-5
	GRVILL	3334	332531.95	2690511.35	43	N.A.
			332532.14	2690510.30	-10	C-5
	USAFAC	3400	390022.44	2550701.01	2191	N.A.
			390021.99	2550658.32	2147	C-5
E	BEDFRD	3401	422717.53	2884335.03	88	N.A.
			422717.06	2884336.14	33	C-5
E	SEMMES	3402	304649.35	2714452.37	79	N.A.
			304649.85	2714451.64	23	C-5
	SWANIS	3404	172416.57	2760329.87	83	N.A.
			172418.90	2760329.71	18	C-5
	GRDTRK	3405	212547.05	2885114.03	7	N.A.
			212548.69	2885115.03	-48	C-5
	CURACO	3406	120522.11	2910943.76	23	N.A.
			120525.49	2910945.16	-34	C-5
	TRNDAD	3407	104432.78	2982323.67	269	N.A.
			104436.16	2982325.43	210	C-5
	GRANFK	3451	475638.63	2623711.21	296	N.A.
			475638.03	2623709.15	242	C-5
	TWINOK	3452	360725.69	2624704.48	312	N.A.
			360725.58	2624702.68	262	C-5
	ROTHGR	3453	512500.00	93006.00	351	European
			512457.05	93000.58	352	C-5
	ATHNGR	3463	375330.00	234430.00	16	European
			375326.07	234426.73	23	C-5
	TORRSP	3464	402918.53	3563441.24	588	European
			402914.10	3563436.06	635	C-5
	CHOFUJ	3465	353957.00	1393212.00	49	Tokyo
			354008.96	1393200.19	75	C-5
	KINDLY	3471	322257.30	2951900.46	26	N.A.
			322257.41	2951902.09	-23	C-5
E	HUNTER	3648	320005.87	2785046.36	17	N.A.
			320006.32	2785046.32	-40	$\mathrm{C}-5$
	JUPRAF	3649	270114.80	2795313.72	26	N.A.
			270116.02	2795313.72	-37	C-5
E	ABERDN	3657	392818.97	2835544.56	4	N.A.
			392818.71	2835545.10	-51	$\mathrm{C}-5$
E	HOMEST	3861	253024.69	2793642.69	18	N.A.
			253026.02	2793642.70	-44	C-5
	CHYWYN	3902	410759.20	2550802.65	1890	N.A.
			410758.61	2550759.94	1845	$\mathrm{C}-5$

*Unless "Source" is specified otherwise.

Table D7

Army Map Service - SECOR - Source H.*

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
G	HERNDN	5001	$38^{\circ} 59^{\prime} 37^{\prime} .69$	$282^{\circ} 40^{\prime} 16^{\prime} .68$	119	N.A.
			385937.47	2824017.08	64	C-5
I	CUBCAL	5200	324800.00	2425200.00	101	N.A.
			324759.74	2425156.55	71	C-5
I	LARSON	5201	471100.00	2404000.00	354	N.A.
			471058.76	2403955.68	319	C-5
I	WRGTON	5202	433900.00	2642500.00	481	N.A.
			433859.49	2642458.27	428	C-5
G	GREENV	5333	332532.34	2690510.78	43	N.A.
			332532.53	2690509.73	-10	C-5
	TRUKIS	5401	72739.30	1515031.28	5^{\dagger}	Navy IBEN ASTRO 1947
			72739.30	1515031.28	5	C-5
	SWALLO	5402	-10 1821.42	1661756.79	$9{ }^{\dagger}$	1966 SECOR ASTRO
			-10 1821.42	1661756.79	9	C-5
	KUSAIE	5403	51744.43	1630129.88	$7{ }^{\dagger}$	ASTRO 1962, 65 Allen Sodano Lt.
			51744.43	1630129.88	7	C-5
	GIZ ZOO	5404	- 80540.58	1564924.82	49^{\dagger}	Provisional DOS
			- 80540.58	1564924.82	49	C-5
	TARAWA	5405	12142.13	1725547.26	$7{ }^{\dagger}$	1966 SECOR ASTRO
			12142.13	1725547.26	7	C-5
	NANDIS	5406	-17 4531.01	1772702.83	17^{\dagger}	Viti Levu 1916
			-1745 31.01	1772702.83	17	C-5
	CANTON	5407	-24628.99	1881643.47	6^{\dagger}	1966 Canton ASTRO
			- 24628.99	1881643.47	6	C-5
	JONSTN	5408	164351.68	1902841.55	6^{\dagger}	Johnston Island 1961
			164351.68	1902841.55	6	C-5
	MIDWAY	5410	281232.06	1823749.53	G^{\dagger}	Midway ASTRO 1961
			281232.06	1823749.53	6	C-5
	MAUIHI	5411	204937.00	2033152.77	32	Old Hawaiian
			204925.14	2033201.88	31	C-5
G	FTWART	5648	315518.41	2782600.26	29	N.A.
			315518.86	2782600.18	-27	C-5
G	HNTAFB	5649	320004.04	2785043.17	27	N.A.
			320004.49	2785043.13	-30	C-5
G	HOMEFL	5861	252921.18	2793739.35	18	N.A.
			252922.51	2793739.37	-44	C-5

*Unless "Source" is specified otherwise.
${ }^{\dagger}$ MSL.

Table D8

USC \&GS - Optical - Source F.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
BELTVL	6002	$39^{\circ} 01^{\prime} 39.03$	$283^{\circ} 10^{\prime} 26!94$	45	N.A.
ASTRMD	6100	390138.80	2831027.40	-10	C-5
		390139.72	2831027.83	45	N.A.
TIMINS	6113	480139.49	2831028.29	-10	C-5
		483356.17	2783744.54	290	N.A.
		48355.70	2783744.49	232	C-5

Table D9
SPEOPT - Optical - Source B.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
1UNDAK	7034	48001'21'40	$262^{\circ} 59^{\prime} 21^{\prime} .56$	255	N.A.
		480120.81	2625919.55	201	C-5
1EDINB	7036	262245.44	2614009.03	67	N.A.
		262246.35	2614007.34	15	C-5
1 COLBA	7037	385336.07	2674742.12	271	N.A.
		385335.81	2674740.85	218	C-5
1BERMD	7039	322148.83	2952032.56	21	N.A.
		322148.94	2952034.18	-28	C-5
1 PURIO	7040	181526.22	2940022.17	58	N.A.
		181528.30	2940023.63	5	C-5
1GSFCP	7043	390115.01	2831019.93	54	N.A.
		390114.78	2831020.39	-1	C-5
1CKVLE	7044	382212.50	2742116.81	187	N.A.
		382212.33	2742116.28	131	C-5
1DENVR	7045	393848.03	2552341.19	1796	N.A.
		393847.54	2552338.52	1751	C-5
1JUM24	7071	270112.77	2795312.31	25	N.A.
		270114.00	2795312.30	-38	C-5
1JUM40	7072	270113.17	2795312.49	25	N.A.
		270114.39	2795312.49	-38	C-5
1JUPC1	7073	270113.11	2795312.72	22	N.A.
		270114.33	2795312.72	-41	C-5
1JUBC4	7074	270113.33	2795312.76	25	N.A.
		270114.55	2795312.76	-38	C-5
1SUDBR	7075	462720.99	2790310.35	281	N.A.
		462720.52	2790310.35	224	C-5
1JAMAC	7076	180431.98	2831126.52	485	N.A.
		180434.20	2831127.03	423	C-5

Table D10
SPEOPT - Laser - Source B.

Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
GODLAS	7050	$39^{\circ} 01^{\prime} 13!68$	$283^{\circ} 10^{\prime} 18!05$	55	N.A.
ROSLAS	7051	390113.45	2831018.51	0	C-5
	351146.60	2770726.23	879	N.A.	
	351146.70	2770726.02	822	C-5	

Table D11
International - Optical - Source I.*

Source	Name	Station No.	Latitude	Longitude	Geodetic Height (meters)	Datum
D	DELFTH	8009	$52^{\circ} 00^{\prime} 09^{\prime} \cdot 24$	$4^{\circ} 22^{\prime} 21^{\prime} \cdot 23$	23	European
			520006.12	42215.30	28	C-5
	ZIMWLD	8010	465241.77	72757.56	903	Berne
		465236.73	72752.54	907	C-5	
	MALVRN	8011	520839.12	3580159.49	111	European
		520835.68	3580153.03	125	C-5	

*Unless "Source" is specified ocherwise.

Table D12
SAO - Optical.

Name	Station No.	Location
IORGAN	9001	Organ Pass, New Mexico
IOLFAN	9002	Olifantsfontein, South Africa
WOOMER	9003	Woomera, Australia
1SPAIN	9004	San Fernando, Spain
ITOKYO	9005	Tokyo, Japan
INATOL	9006	Naini Tal, India
IQUIPA	9007	Arequipa, Peru
ISHRAZ	9008	Shiraz, Iran
ICURAC	9009	Curacao, Lesser Antilles
IJUPTR	9010	Jupiter, Florida
IVILDO	9011	Villa Dolores, Argentina
IMAUIO	9012	Maui, Hawaii
OSLONR	9426	Oslo, Norway
AUSBAK	9023	Woomera, Australia
NATALB	9029	Natal, Brazil
AGASSI	9050	Cambridge, Massachusetts
COLDLK	9424	Cold Lake, Alberta
EDWAFB	9425	Edwards AFB, California
RIGLAT	9428	Riga, Latvia
POTDAM	9429	Potsdam, Germany
ZVENIG	9430	Zvenigorod, Russia

Table D13
STADAN - Optical.

Name	Station No.	Location
1BPOIN	-	
1FTMYR	1021	Blossom Point, Maryland
1OOMER	1024	Fort Myers, Florida
1QUITO	1025	Woomera, Australia
1LIMAP	1026	Quito, Ecuador
1SATAG	1028	Santiago, Peru
1MOJAV	1030	Mojave, California
1JOBUR	1031	Johannesburg, Union of South Africa
1NEWFL	1032	St. John's, Newfoundland
1COLEG	1033	College, Alaska
1GFORK	1034	East Grand Forks, Minnesota
1WNKFL	.1035	Winkfield, England
1ROSMA	1042	Rosman, North Carolina
1TANAN	1043	Tananarive, Madaga scar

Table D14
STADAN - RİR.

Name	Station No.	Location
MADGAR	1122	Tananarive, Madagascar
ROSRAN	1126	Rosman, North Carolina
CARVON	1152	Carnarvon, Australia

Table D15
Navy TRANET - Doppler.

	Location	
Name	Station No.	
LASHAM	2006	Lasham, England
SANHES	2008	Sao Jose dos Campos, Brazil
PHILIP	2011	San Miquel, Philippines
SMTHFD	2012	Smithfield, Australia
MISAWA	2013	Misawa, Japan
ANCHOR	2014	Anchorage, Alaska
TAFUNA	2017	Tafuna, American Samoa
THULEG	2018	Thule, Greenland
MCMRDO	2019	McMurdo Sound, Antarctica
WAHIWA	2100	South Point, Hawaii
LACRES	2103	Las Cruces, New Mexico
LASHM2	2106	Lasham, England
APLMND	2111	APL Howard County, Maryland
PRETOR	2115	Pretoria, Union of South Africa
SHEMYA	2739	Shemya Island, Alaska
BELTSV	2742	Beltsville, Maryland
STNVIL	2745	Stoneville, Mississippi

Table D16

Air Force - Optical.

Name	Station No.	Location
ANTIGA	3106	Antigua Island, Lesser Antilles
GRNVLE	3333	Stoneville, Mississippi
GRVILL	3334	Stoneville, Mississippi
USAFAC	3400	Colorado Springs, Colorado
BEDFRD	3401	L. G. Hanscom Field, Massachusetts
SEMMES	3402	Semmes Island, Georgia
SWANIS	3404	Swan Island, Caribbean Sea
GRDTRK	3405	Grand Turk, Caicos Islands
CURACO	3406	Curacao, Lesser Antilles
TRNDAD	3407	Trinidad Island
GRANFK	3451	Grand Forks, North Dakota
TWINOK	3452	Twin Oaks, Oklahoma
ROTHGR	3453	Rothwesten, West Germany
ATHNGR	3463	Athens, Greece
TORRSP	3464	Torrejon de Ardoz, Spain
CHOFUJ	3465	Chofu, Japan
KINDLY	3471	Kindley AFB, Bermuda
HUNTER	3648	Hunter AFB, Georgia
JUPRAF	3649	Jupiter, Florida
ABERDN	3657	Aberdeen, Maryland
HOMEST	3861	Homestead AFB, Florida
CHYWYN	3902	Cheyenne, Wyoming

Table D17

Army Map Service - SECOR.

Name	Station No.	Location
HERNDN	5001	Herndon, Virginia
CUBCAL	5200	San Diego, California
LARSON	5201	Moses Lake, Washington
WRGTON	5202	Worthington, Minnesota
GREENV	5333	Greenville, Mississippi
TRUKIS	5401	Truk Island, Caroline Islands
SWALLO	5402	Swallow Island, Santa Cruz Islands
KUSAIE	5403	Kusaie Island, Caroline Islands
GIZZOO	5404	Gizzoo, Gonzongo, Solomon Islands
TARAWA	5405	Tarawa, Gilbert Islands
NANDIS	5406	Nandi, Viti Levu, Fiji Islands
CANTON	5407	Canton Island, Phoenix Islands
JONSTN	5408	Johnston Island, Pacific Ocean
MIDWAY	5410	Eastern Island, Midway Islands
MAUIHI	5411	Maui, Hawaii
FTWART	5648	Fort Stewart, Georgia
HNTAFB	5649	Hunter AFB, Georgia
HOMEFL	5861	Homestead AFB, Florida

USC\&GS - Optical.

Name	Station No.	Location
BELTVL	6002	Beltsville, Maryland
ASTRMD	6100	Beltsville, Maryland
TIMINS	6113	Timmins, Ontario

Table D19

SPEOPT - Optical.

Name	Station No.	Location
1UNDAK	7034	Univ, North Dakota, Grand Forks, North Dakota
1EDINB	7036	Edinburg, Texas
1COLBA	7037	Columbia, Missouri
1BERMD	7039	Bermuda Island
1PURIO	7040	San Juan, Puerto Rico
1GSFCP	7043	GSFC, Greenbelt, Maryland
1CKVLE	7044	Clarksville, Indiana
1DENVR	7045	Denver, Colorado
1JUM24	7071	Jupiter, Florida
1JUM40	7072	Jupiter, Florida
1JUPC1	7073	Jupiter, Florida
1JUBC4	7074	Jupiter, Florida
1SUDBR	7075	Sudbury, Ontario
1JAMAC	7076	Jamaica, B.W.I.

Table D20

SPEOPT - Laser.

Name	Station No.	Location
GODLAS	7050	GSFC, Greenbelt, Maryland ROSLAS
7051	Rosman, North Carolina	

Table D21

International - Optical.

$\left[\right.$| Name | Station No. | Location |
| :---: | :---: | :--- |
| DELFTH | 8009 | Delft, Holland |
| ZIMWLD | 8010 | Berne, Switzerland |
| MALVRN | 8011 | Malvern, England |

Sources

The following sources were used to obtain the original datum positions:

Symbol

Source

A Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth (Reference D1, below).

B Goddard Directory of Tracking Station Locations; August 1966; Goddard Space Flight Center.

C NWL-8 Geodetic Parameters Based on Doppler Satellite Observations; July 1967; R. Anderle and S. Smith, Naval Weapons Laboratory.

Since the above official documents did not contain all those positions that were to be transformed, it was necessary to contact other sources for the positions of the remaining stations. These sources are:

D Private communication with personnel at SAO (K. Haramundanis, B. Miller, A. Girnius).

E Private communication with 1381 Geodetic Survey Squadron, USAF (S. Tischler).
F Private communication with personnel at USC\&GS (B. Stevens).
G Private communication with personnel at U.S. Army Engineers Topographic Laboratories (L. Gambino).

H Private communication with NASA Space Science Data Center (J. Johns, D. Tidwell).
I General Station Data Sheet - GEOS-A Project Manager, NASA Headquarters.

REFERENCES

1. Lundquist, C. A., and Veis, G., "Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth," Smithsonian Astrophysical Observatory Special Report No. 200, Vol. 1, 1966.
2. Lerch, F. J., Marsh, J. G., D'Aria, M. D., and Brooks, R. L., 'GEOS I Tracking Station Positions on the SAO Standard Earth (C-5)," NASA Technical Note D-5034, August 1968.
3. Lerch, F. J., Doll, C. E., Moss, S. J., and O'Neill, B., "The Determination and Comparison of the GRARR MADGAR Site Location," NASA Technical Note D-5033, August 1968.

[^0]: \#See Appendix A for a listing of the data, Tables Al and A2.
 ${ }^{\dagger}$ A flash sequence consisted of 7 flashes each separated by 4 seconds in time, and each flash throughout a sequence was composed of $1,2,3$, or 4 assigned lamps.
 ${ }^{\ddagger}$ See Appendix D.
 ${ }^{\$}$ See Appendix C.

[^1]: *It should be noted that in this analysis only the unknown parameters $\triangle B$ and $\triangle t$ were determined. The other paramerers are presented since they are known corrections which should be applied to the GRARR range data as it exists in the National Space Science Data Center (NSSDC).

[^2]: *Kronmiller, G. C., Jr., and Baghdady, E. J., "The Goddard Range and Range Rate Tracking System: Concept, Design, and Performance," NASA TM X-55382, October 1965.

[^3]: *"GEOS-A Clock Calibration," Applied Physics Laboratory, Johns Hopkins University, Silver Spring, Md., 1966.

[^4]: *Unless "Source" is specified otherwise.
 \dagger These SAO station positions were derived by using the weighting scheme described in Reference 2 (in its second section, "Coordinate Transformation").

