General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-TM-84986) A REFINED GRAVITY MODEL FROM LAGEOS (GEM-L2) (NASA) 63 p HC AC4/MF AC1 CSCL 08G

N83-19369

5

Unclas G3/46 08795

NASA **Technical Memorandum 84986**

A REFINED GRAVITY MODEL FROM LAGEOS (GEM-L2)

F.J. Lerch, S.M. Klosko and G.B. Patel

FEBRUARY 1983

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

A REFINED GRAVITY MODEL FROM LAGEOS

K12

۰.

(GEM-L2)

F.J. Lerch Geodynamics Branch Goddard Space Flight Center Greenbelt, Maryland 20771

S.M. Klosko EG&G Washington Analytical Services Center, Inc. 6801 Kenilworth Avenue Riverdale, Maryland 20737-0398

> G.B. Patel Computer Sciences Corporation 8728 Colesville Road Silver Spring, Maryland 20910

OF POOR QUALITY

ABSTRACT

A refined gravity field model, Goddard Earth Model GEN-L2, has been derived using the Lageos orbital data yielding better baseline measurements for the analysis of tectonic plate motion. This field also contributes to an improved understanding of long wavelength features, such as the sea slope across broad ocean basins, through its significant improvement of the long wavelength geoid (through degree and order 4). The geoid for these terms has an accuracy estimated at + 8 cm in GEM-L2. GEM-L2, as in all recent Goddard Earth Models, relies heavily on the precise near-Earth satellite laser ranging data, in this case provided by NASA's Crustal Dynamics Program. Two and a half years of Lageos laser data acquired from over 20 welldistributed stations were combined with the existing data from the best satellite-derived model, GEM-9, to develop the new Lageos model. Testing shows that the Lageos gravity field error at long wavelengths is less than half that for GEM-9. Independent tests using well determined longitude accelerations of 24-hour satellites have verified the improved accuracy of the new model. A comparison of global stations from independent "base" laser data sets οf alternating 15 day data segments over two years of Lageos show total inter-station positioning to + 1.8 cm when using this new field. The same comparison using the 1979 versus the 1980 Lageos data yields \pm 5.2 cm; this difference in agreement reflects the change in data distribution and other systematic errors along with the tectonic motion which has occurred between these chronologically distinct data

sets. Five day average polar motion values with a precision of 10 cm and change in length of day values accurate to better than .5 msec have been derived in the solution. The adjustment of these earth orientation parameters are necessary to achieve the accurate stations and geopotential results in GEM-L2.

El.

÷.

ORIGINAL PAGE IS OF POOR QUALITY

۰.

TABLE OF CONTENTS

.

		Page
	ABSTRACT	
1.0	INTRODUCTION	1
2.0	DATA	2
3.0	METHOD	9
4.0	EVALUATION OF THE RESULTS	15
5.0	ORBITAL ACCURACIES ON LAGEOS	44
6.0	SUMMARY	51
	REFERENCES	53

6.17

1

۰.

LIST OF FIGURES

Page

Figure	1	Lageos Data Summary For Gravity Model Improvement	3
Figure	2	Orbit Perturbation of Lageos Position Due To Gravity Field Harmonics	10
Figure	3	Estimated Errors For GEM 9 (Units=10 ⁻⁹ For Fully Normalized Harmonics)	16
Figure	4	The Longitude of SYNCOM 2	21
Figure	5	1980 Polar Motion: AX (GEM-L2 - BIH)	25
Figure	6	1980 Polar Motion: AY (GEM-L2 - BIH)	26
Figure	7	Histogram of Baseline Agreement For 8 Base Stations (AVG=1.8 cm) When Using GEM-L2 Gravity and Polar Motion	39
Figure	8	A Measure of SLR Baseline Precision From Alternating Arcs of 1979 Through 1980 Lageos Data	40
Figure	Ŋ	Lageos Orbit Errors (Centimeters) Due to Errors in GEM 9 Harmonics	45
Figure	10	Lageos Orbit Errors (Centimeters) Due to Errors in GEM-L2 Harmonics	47

original page is of poor quality

۰.

. .

LIST OF TABLES

,

¥.

Page

£

Table	la	Lageos Data Summary for 1979	5
Table	1b	Lageos Data Summary for 1980	6
Table	lc	Lageos Datu Summary for 1981	7
Table	2	Data Weighting in GEM-L2	8
Table	3	GEM-L2 Normalized Coefficients (X 10 ⁶)	11
Table	4	Estimated Individual Low Degree and Order Coefficient Accuracy From Goddard Gravity Models in Centimeters	18
Table	5	Updated Evaluation of Recent Gravity Models Using the Observed Longitude Accelerations of Eight 24-Hour Satellites	19
Table	6	Gravity Model Evaluation Using Data From 24 Hour Satellites	20
Table	7	The Effect On The Gravity Field of Solving For Polar Motion	24
Table	8	Polar Motion From GEM-L2	28
Table	9	Change in Length of Day From GEM-L2	32
Table	10	Baseline Comparison From Two Independent Lageos Data Sets Spanning 1979 Through 1980	37
Table	11	GEM-9 Versus GEM-L2 Station Positioning Comparison	41
Table	12	Baseline Uncertainties Computed From GEM-L2 Gravity Field Errors	42
Table	13	GEM-L2 Station Coordinates	43
Table	14	Lageos Orbit Test: 15 Day Arc With Middle 5 Day's Data Deleted	49

,

LIST OF TABLES (Continued)

1.17

.

		Page	
Table 15	15 Day RMS of Fit to Normal Point Observations on Lageos	50	
Table 16	Summary of GEM-L2	52	

1.0 INTRODUCTION

The spacecraft i s unique Lageos in several respects. In addition to its well-designed shape as a laser target, the satellite's high density and high altitude orbit virtually eliminate any error from the uncertainty arising in modeling non-gravitational forces. At an altitude of radius, Lageos experiences a strong nearly one earth gravitational force from the longest wavelength portion of the geopotential, with the effects falling off quickly at short wavelength due to the attenuation of the field at Lageos' altitude.

Coupled with an extensive and highly accurate laser tracking campaign, Lageos data have provided a rich resource for improving our knowledge of the long wavelength gravity field. Since the use of <u>Satellite Laser Ranging</u> (SLR) for measuring crustal dynamics requires the proper modeling of orbital dynamics, the gravity studies for Lageos have borne dual results: 1) an improved ability to estimate intersite distances for tectonic motion studies, and 2) a greatly enhanced knowledge of the gravity field through degree and order four.

2.0 DATA

The Lageos spacecraft was placed into a high altitude (5900 km), nearly circular orbit on May 4, 1976. Typical mean Keplerian elements for Lageos are shown below:

semi-major axis;	12267.7	kn
eccentricity:	.002	
inclination:	109 84	

To date, data from a global network of laser stations was acquired over a time span of six years on Lageos. Figure 1 presents a synopsis of the data available over the first four years (1976 through 1979) of Lageos tracking. As is apparent from this figure, there was a significant increase in data availability, improved global distribution and many more participating NASA stations commencing in 1979. Of note, also, is the improvement of the SAO systems (systems with 7900 number designation) which began about 1979. Consequently, our gravity modeling activities utilized Lageos data beginning with February of 1979.

The new model, GEM-L2, has incorporated 2 1/2 years of Lageos based data in combination with satellite tracking data taken on 30 other satellites as in GEM 9 (Lerch et al., 1979). This solution, complete in spherical harmonics through degree and order 20, contained well over 600,000 laser measurements, more than half of which were taken from Lageos. Lageos laser data are accurate down to about 8 cm and formed the predominant weight in the solution. However, because of the attenuation of the gravitational field at

-
~
-
0
_
-
in the second
-
~
1.7
20
10
~ ~ /
the second se
~ ~
<u> </u>
•
D .
And and a second second
LL.
-
0
-
~
ويدابين
<u> </u>
~
Sec.
and the second second
~

LAGEOS DATA SUMMARY FOR GRAVITY MODEL IMPROVEMENT

2833	•	Q	9	•	G	
7210	•	•	۲	42*	42*	
9117	۲	۲	۲	21	21	
4117	۲	۲	۲	71	71	
104	۲	•	Ø	13	13	
2103	٠	٠	•	15	15	
2017	٠	۰	٠	22	22	
1017	•	۲	٠	2	2	
9602	0	9	•	12	12	
1602	•	•	22	53	75	
0607	•	•	۲	1	15	
980L	9	@	۲	4	4	
98 02	÷	•	27	•	27	
\$80 7	•	۲	14	۲	14	
2807	30	•	•	36	66	
890Z	ě	•	् च	- 1	4 7	
L9 0L	3	5	S	•	gun.	
990Z	3	•	۲	٠	2	
2002	CD	œ	44	89	150	
2 902	34	17	18	34	133	
1902	2	•	٠	13	20	
		m	~	0	6	
2943	•	12	3	X	236	
626L	32	24	σ	10	75	
1267	96	74	61	20	251	
206Z	61	101	46	151	359	
NO. OF ARCS	10	15	14	24	£ 3	
YEAR	1976	1977	1978	1979	TOTAL	

3

4

. 11

TOTAL NUMBER OF PASSES: 1662

*Data has not been used in normal equation generation.

11 14

10**#**1 1000

FIGURE 1

1

high altitude the effective strength of the Lageos data falls off rapidly for the high degree terms and resulted in the GEM 9 data controlling the adjustment for the harmonics beyond degree 7. For Lageos approximately 20 laser stations with a global distribution contributed data in the GEM-L2 solution although more than half of these stations were located in the United States. A description of the data (1979 through 1981) is given by station for each of the orbital arcs (15 doys in length) in Tables 1a through 1c. The data on Lageos were weighted in the solution to provide for a balance both by station and by orbital arc as described in Table 2.

				DAC		ori Of	GIN PO		l f r ç	PAG 2UA	e i Lit	Ч Ч	*			EΥ				•		
	ADEL AC	ANELAJ	NATLAS	HOPLAS	ORRLAS	CTAL AC		C2F (GSFC	SANDIE	FT. DAVIS	YARRAGADE	HAYSTACK	AM. SAMOA	GSFC	OWENS VALL	GOLDSTONE	HOLLAS	BFAR LAKE	GSFC	RANLAS	QUINCY
	70.07	10/1	7929	1267	7943	EJUL	C001 C	103	7104	7062	7086	7090	160L	960L	7102	7114	7115	7210	7082	7101	7069	1307
<u>1979</u>																						
201	×		x	×	×	×	>	<	x	x										~		
216	×		×	x	x					x										×		
303	×		x	x	x	x	×	٢		x									v			
318	×			x	x	x	×	\$		x					x				Ŷ	v	v	v
402	×	;	×	x	x	x				x					x				Ŷ	Ŷ	Ŷ	Ç
417	×			x	x	x	x		x	x					x				×		Ç	Ĉ
502	×	>	<	x	×	x			x	x									x		Λ	A V
57 7	×				x	x				x									x			Ç
603	x	×	\$		x																	^
618	×				x																	
703	×				x														x			
718	×				x													x	x			
802	×	x	•	x	x								x	x					x			
817	x	×			x									×				x			x	
901	×				x	×							x	x		x					~	
916	x				x	x					x		x			x	x					
1001	×	x			x	x					x	x	x	×	×	x					v	
1016	×				x	×					x	x	x	×	x	x					^	
031	×				x	x					x		x	x	x	x	x					
115	×	x			×	x				:	x		x	x	X	x :	K					
130	×	x		:	×	x				;	×	x	x	x	x	к у	, ,					
215	×	x				×	×			:	×	×		x	× :	< >	`					

<u>،</u>

Table Ia. LAGEOS Data Summary for 1979

		~	`		OF OF	rigi : Pi	NAI 00F	- P/ ? Q!	UAL	. 185 .ITY	,			~									
		242	Ś						S	ADEE	X	OA		ALLEY	ШШ		КП				2		
	ARELAS	NATLAS	HOPLAS	ORRLAS	STALAS	GSFC	GSFC	SANDIE	FT. DAVI	YÅRRAG	HAYSTAC	AM. SAM	GSFC	OWENS V	GOLDSTC	HOLLAS	BEAR LA	GSFC	RAMLAS	QUINCY	KWAJ 80	WL0110	
	7907	7929	7921	7943	7063	7103	7104	7062	7086	7090	1602	7096	201 <i>L</i>	7114	7195	7210	7082	1012	7069	7051	7092	7120	
1980																							
102	×	x			x				×	×	×		×	×	×								
117	×	×			×				x	×	x			x	×				x				
201	×	x		×	×				x	×	x	x		×	×				x				
216	×			×	×				x	×	x	x	x	x	×				×				
302	×	x		×	×				x	×	X	x	x	x	×				×				
317	×	×		×	×				×	×	x	x	×	×	×				x				
401	×	X		×	×				x	×	x	x	X,	×	×								
416	×	x		×	×				x	×	x	x	x	x	×	×			×				
501	×	×		×					×	×		×		×	x								
516	×	x		×	×					×	x	x	×	x	×								
600	×	×		×							x	x	×		×	×							
615	×	×		x							x		x			×							
630	×	x		x					х	×	x	х									x		
716	х	×		×	×				×	×	x	×	×	×	×						x		
731	×	x		×	×				x	×	x	x		×	×				×		x		
815	×	×		×	×					×	x	×		×	×						x		
830	×	x		×	×					x	x	x	×	x	×						x	x	
914	×	×		×	×					×	×	×	×	×	×						x		
929	×	х		×	×					×	x	x	×	x	x						x		
1014	×	×		×	×					×	x	x	×	x	×						x	x	
1029	×	×		x						x	x	x	×	x	x						x	×	
1112	×	x		×						x	X			x	x								
1128	×	x		x	×					x				x	x							×	
1213	×	x		x	×					x			x	x	24								

ļ,

*2

· ka#Z

Table 1b. LAGEOS Data Summary for 1980

б

1

		SAO					DEE		NE		ALLEY		
	ARELAS	NATLAS	ORRLAS	άνινςΥ	STALAS	BEARLK	YARRAGA	ML0212	GOLDSTO	ML0402	OWENS V	НАМХАА	ML0705
	7007	7929	7943	7051	7063	7082	7090	7112	7115	7102	7114	7120	7105
1981													
801228	x	х	x				x		х	х	x		
810112	х	х	х		х		х			х			
127		х	х		х		х			х			
211		х	х	х	х		х	х	х			х	
226	х	х	Х	х	X		х	Х	Х	Х			х
313	х	х			Х	х	Х		х	х		х	х
328	х	х	Х	х	х	х	Х	Х	Х				
412	х	Х	х	х	Х	х	Х	Х		Х			
427	х	х		х	х	х	х	х					
512	х	х		х	х		х	х					
527	х	х					Х	Х					
511	x	х	X		х		х	х		х		Х	
626	х	х	х				х	х				х	

Table 1c. LAGEOS Data Summary for 1981

TABLE 2

DATA WEIGHTING IN GEM--L2

* .

•

DATA	WEIGHTING USED	TOTAL OBS
GEM 9 OPTICAL	2 ARC SEC	150,000
GEM 9 ELECTRONIC	10 M(4 CM/SEC)	477,000
GEM 9 LASER	4 M (AVE.)	213,000
(LAG'79) LAGEOS 1979	50 CM	105,000
(LAG'80) LAGEOS 1980	50 CM	251,000*
(LAG'81) LAGEOS 1981	50 CM	87,000*
GEM-L2	50 CM	443,000*

*1980 AND 1981 DATA SCALED TO HAVE SAME OVERALL WEIGHT AS 1979 LAGEOS DATA. 1

1000

ORIGINAL PAGE IS OF POOR QUALITY

¥.

3.0 METHOD

The potential coefficients $(C_{\ell m}, S_{\ell m})$ for GEM-L2 refer to the definition of the gravitational potential as

11

$$V = \frac{\mu}{r} \left[1 + \sum_{\ell=2}^{\infty} \sum_{m=0}^{\ell} \left(\frac{r_{e}}{r} \right)^{-\ell} \overline{P}_{\ell m} (\sin \phi) \right]$$

$$\left[C_{\ell m} \cos m\lambda + S_{\ell m} \sin m\lambda \right]$$

where r, ϕ , and λ are the distance to the center of mass, P_{lm} is the fully geocentric latitude and longitude. normalized associated Legendre function of degree L and order m, and r, is the earth's mean radius. The GEM-L2 model is complete to degree and order 20, with Lageos being evaluated for its contribution complete out through degree and order 16, and beyond for the zonals and certain other orders. Figure 2 shows the coefficients selected for Lageos' geopotential contribution when combined with GEM-9. An estimate of the orbital perturbations on Lageos arising from the gravity field is contained, also, in Figure 2. The complete set of the GEM-L2 coefficients are given in Table 3.

Even though a large Lageos data set has been used in GEM-L2, this satellite only solution, like GEM-9 (Lerch et al., 1979), still requires the utilization of a modified least squares method to achieve stability in its recovered FIGURE 2

ORBIT PERTURBATION OF LAGEOS POSITION DUE TO GRAVITY FIELD HARMONICS

GEM--L2 NORMALIZED COEFFICIENTS (x 10⁶) **TABLE 3**

ZONALS

EX M - 48	VALUE 34_16499	INDEX N M 3 O	VALUE 0.95772	IN N 7	X M O	VALUE 0.54127		× ₩ O	VALUE 0.06924	IND R	X.Σ O	VALUE -0.15063
0000	2337 4852 486	9000)	0.0162	10 <u>40</u>	0000	0.02769	. = = 8 8		0.05334 0.00286 0.02689	5 2 4 7	0000	-0.04849 -0.00723 -0.00002
0.010	2 1 V C 2 2 1 V C 2 2 1 V C	23 28 0	-0.02263 -0.02263	29	00	-0.01127	Ň	5		97	>	
-												
X		VALUE		INDEX		VAL	UE		XZÚNI		VAL	UE
X	υ	S		¥ 2		υ	S		7 2	U		S
-	-0.0010	6 -0.003(70	с Г	2.	02882	0.24969		4	0.5352	ь	-0.46629
-	-0.0540	0 -0.095	10	9	İ	07489	0.01773		7	0.2691	ហ	0.09374
***	0.0232	1 0.061	38	ი	o.	15543	0.01703		0	0.0826	.	-0.13442
-	0.0006	8 -0.013/	44	12	۰ ٩	06461	-0.05435		13	-0.0359	 1	0.03623
-	-0.0176	3 0.0517	71	15	ဝုံ	01791	0.00030		16	0.0289	თ	-0.00991
-	-0.0387	1 -0.024	21	18 1	o.	00265	-0.00214		19 1	I -0.0365	5	-0.00351
	0.0057	0 -0.021	89	21 1	ė.	01301	0.00741		22	0.0028	-	0.00524
-	0.0028	5 0.003	27	24 1	ģ	00684	-0.00285		25	0.0124	ن د	-0.00529
2	2.4379	1 -1.359	18	3	ò	90403	-0.61594		4	0.3546	n i	0.66083
3	0.6509	6 -0.330	50	6 2	ò	05028	-0.35499		-	0.3347	m	0.10701
2	0.0742	2 0.048(60	9	°.	02584	-0.03132		5 0	2 -0.0804		-0.01170
2	0.0461	6 -0.093	73	12 2	ó	00715	-0.01034		13	2 C.O231	8	-0.03852
2	-0.0319	9 0.040	55	15 2	ò	01423	-0.02580		16.2	2 -0.0027	ហ	0.00841
2	-0,0077	5 0.010	31	18 2	ò	00749	0.02250		5	2 0.0114	ហ	-0.00576
3	-0,0003	0 0.001	43	21 2	<u>.</u>	01694	0.00744		22	2 -0.0007	~	-0.01265
e	0.7231	5 1.415	20	4	ò	99325	-0.20270		in in	3 -0.4500	ğ	-0.21279
ო	0.0603	0.001	78	7 3	o.	24609	-0.21509		80	3 -0.0056	0	-0.08853
ო	-0.1561	5 -0.099	36	10 3	ò.	01610	-0.15891		÷	3 -0.0219	-	-0.13229
e	0.0669	7 0.0304	04	13 3	, ,	02825	0.07916		14	3 0.0166	ហ្គ	-0.01102
e	0.0255	0 0.010	47	16 3	ې ٩	00701	-0.02406		17	3 -0.0114	ŝ	0.00962
C	-0.0042	2 -0.001	61	19 3	0	00045	0.00023		20	3 -0.0155		0.00928
. m	0.0046	0 0 003	18	22 3	Ö	00058	0.01083		খ	1 -0.1921	0	0.30701
له ۱	-0.2916	30,049	53	6	Ģ	10190	-0.46823		7 7	1 -0.2867	2	-0.12730
4	-0.2441	4 0.074	43	0 7	۰ ٩	100997	0.00946		ç	1 -0.0973	Ţ	-0.06744
4	-0.0449	1 -0.059	10	12 4	ę	07182	-0.00841		13 4	1 -0.0252	4	0.00968

the state of the second

ORIGINAL PAGE IS OF POOR QUALITY

۰.

. .

TABLE 3. (CONTINUED)

SECTORIALS AND TESSERALS (CONTINUED)

1

۰,

INDE:	×	46	VLUE	INDEX	>	ALUE	INDEX	12	VLUE
z	X	υ	S	¥ Z	о I	S	¥ Z	υ	S
14	দ	-0.01379	0.00930	15 4	-0.04430	-0.00687	16 4	0.04104	0.01358
17	4	0.00450	-0.00448	18 4	0 07833	0 01689	19 4	-0.00333	
000	P	-0.00166	-0.00468	0. FC	0 00356	-0.000			0.0000
, u	ររេ	0010010		ע ז - ע א			ч н ч н		
	נ ר			וס		-00-		0.01200	0.04163
æ	n	-0.014/0	0.08008	ດ ດ	0.00314	-0.06886	10 5	-0.06239	-0.03986
Ę	LC)	0.04797	0.08457	12 5	0.04567	0.01427	13 5	0-07560	0.04919
14	ស	0.01761	-0.01990	15 5	-0.01052	-0.00534	16 5	-0.01438	0.00103
17	S	-0.02360	0.00927	18 5	0.01235	0.01468	5 5	-0.00090	-0.00176
02	un	-0.00230	0 00689	9	0.00870	-0.23801	7 6	-0 36046	0 15170
0	9	-0.06813	0.31230) ທ ດ	0.04725	0.2226	. 0 6	-0.03388	-0.08941
)	,))			2		
11	9	0.00435	0.04243	12 6	0.00735	0.03337	13 6	-0.03617	0.00706
14	9	-0.00211	-0.00766	15 6	0.02715	-0.03243	16 G	0.00311	-0.03344
17	G	0.00003	-0.00976	18 6	0.01601	-0.01367	19 6	0.00043	-0.00079
20	9	-0.00563	0.00187	7 7	0.00919	0.02759	8 7	0.06709	0.07413
σ	2	-0.10256	-0.08868	10 7	0.00508	0.00393	11 7	0.01439	-0.08383
12	۲	-0.00999	0.04509	13 7	-0.00202	0.00021	14 7	0.01813	-0.03150
ប្	-	0,06865	0.01295	16 7	0.00778	-0.00257	17 7	0 01837	0 01082
α	-	-0 003R4	-0.0008	19	-0.00623	0 00776	- 00	82600 0-	-0.00333
α	- α	-0 12224	0 17976	- α 2 σ	0 18658		- a		-0.00124
) ;	οα	0.00269	0 02225	, (-0.02500	0 02469	2 g 2 g 2 g	-0.07569	-0 00398
•	5		0.01443	2	0.02200		2		0.0000
14	8	-0.04494	0.00494	15 8	-0.01833	0.02496	16 8	-0.00746	0.00811
17	œ	0.01423	-0.00032	18 8	0.00993	-0.01356	19 8	0.00686	-0.01824
20	æ	-0.00214	-0.06324	6 6	-0.05569	79590.0	10 9	0.12351	-0.04977
-	თ	-0.03015	0.03431	12 9	0.04378	0.01404	13 9	0.02602	0.04295
14	ō,	0.04251	0.01453	15 9	0.01402	0.04282	16 9	-0,01646	-0.03521
17	ດ	-0.00876	-0.01985	18 18	-0.02329	0.02532	6 6	0.00259	0.01826
20	თ	0.00551	0.02069	21 9	0.00304	-0.00339	22 9	0.00422	-0.00307
₹ 0†	0	0.10891	-0.02522	11 10	-0.06075	-0.00632	12 10	0.00693	0.04739
11 E1	0	0.03117	-0.03419	14 10	0.05922	0.01020	15 10	0.02971	0.00611
16 1(0	0.01674	0.00776	17 10	0.01204	0.00997	18 10	-0.00314	-0.00890
19 1(o	-0.01406	-0.00843	20 10	-0.01468	-0.00957	21 10	-0,00039	0.00208
22 11	0	0.00141	-0.00021	11 11	0.04004	-0.08095	12 11	0.01593	-0.00680
13 1	-	-0.04370	-0.01857	14 11	0.01777	-0.03419	15 11	-0.00104	-0.00418
16 1	-	0.02037	0.01117	17 11	-0.03894	-0.00199	18 11	-0.00288	0.01764
19 1	-	-0.00188	0.02721	20 11	0.01092	-0.01022	21 11	-0.00568	-0,00994
22 1	Ŧ	-0.00574	-0.02402	12 12	-0.00776	-0.01244	13 12	-0.03219	0.09036
14 1:	2	0.00815	-0.03131	15 12	-0.03325	0.01656	16 12	0.01743	0.00944
17 1:	2	0.03141	0.02155	18 12	-0.04014	-0.02431 -	19 12	-0.01021	0.00576
20 1:	2	-0.01117	0.02646	21 12	0.00153	0.02238	22 12	-0.01614	-0.01805
23 1:	2	0.01738	0.01004	24 12	-0.00853	-0.01525	25 12	-0.01241	0.00101

original page is of poor quality

`**,**

.

**

TABLE 3. (CONTINUED)

SECTORIALS AND TESSERALS (CONTINUED)

• •

INDEX VALUE N M C S	n > :	15 13 -0.02297 -0.00174	18 13 -0.01142 -0.03714	21 13 -0.01666 0.01429	24 13 0.00616 -0.00586	27 13 -0.00823 -0.01032	14 14 -0.05101 -0.00578	17 14 -0.01584 0.01085	20 14 0.01228 -0.01004	23 14 0.00863 -0.00534	26 14 0.00745 0.00118	29 14 -0.01098 0.00998	17 15 0.00097 0.00481	20 15 -0.02379 0.00874	23 15 0.01346 0.00344	16 16 -0.02921 0.01225	19 16 -0.03540 -0.01307	22 16 -0.00408 -0.00471	19 17 0.03042 -0.00578	22 17 -0.00531 -0.00377	20 18 -0.00318 0.02954	19 19 0-00971 -0.00310	22 49 -0 01801 -0 0282	28 26 0 00742 -0 00231	28 27 -0.00831 0.00257	
د ALUE	ז	0.04251	0.01985	0.00444	-0.00146	-0.00314	-0.00871	-0.03788	-0.01259	0.001552	0.01692	-0.01057	-0.02596	-0.01532	0.00008	-0.00172	0.01945	-0.00598	0.01066	-0.00293	-0.02103	-0,00950	CDROC C-	-0.00610	-0.00300	
S U)	0.02851	0.01436	0.02423	-0.00229	-0.00332	-0.01111	-0.01947	-0.00559	0.00958	-0.02421	-0.00535	-0.01312	-0.02227	0.02408	-0.00247	0.01111	-0.00008	0.02115	-0.00267	0.03385	0.00909	0 01193	-0.01117	0.00010	
X M N	2	14 13	17 13	20 13	23 13	26 13	29 13	16 14	19 14	22 14	25 14	28 14	16 15	19 15	22 15	25 15	18 16	21 16	18 17	21 17	19 18	22 18	21 19	27.26	27 27	
د د الا	7	0.07051	-0.00720	-0.02993	0.00848	-0.00833	0.00836	-0.02458	-0.00921	0.01022	0.00360	0.00589	-0.00570	-0.01612	0.01149	-0.00217	0.01/26	0.00097	-0.00003	-0.00728	-0.01274	-0.01386	0 00871	-0.00553	-0.01690	
C VA)	-0.06036	0.01243	-0.01285	-0.02936	0.01509	0.02059	0.00400	-0.00866	0.01937	-0.01684	0.02345	-0.02184	-0.05446	0.01043	0.00586	-0.02391	-0.01393	-0.01190	-0.01306	0.00199	0.01250	0 01721	-0.00618	-0.01032	
N N N		13 13	16 13	19 13	22 13	25 13	28 13	15 14	18 14	21 14	24 14	27 14	15 15	18 15	21 15	24 15	17 16	20 16	17 17	20 17	18 1S	21 18	20 19	00 00	29 26	

ORIGINAL PAGE IS OF POOR QUALITY

ŗ,

13

*

111

coefficients of high degree. The modified least squares method which is employed, is fully described in Lerch et al., 1977. An elaborate force model was utilized in the analysis of the Lageos data. The solution is referred to a speed of light of 299792.5 m/sec because of the large data set in GEN-9 which used this pre-existing value. The Earth's µ has been adjusted in the GEM-L2 solution (simultaneously with the gravity harmonics and station positions) yielding a value of $398600.607 \text{ km}^3/\text{sec}^2.^1$ This value is in good agreement with other recent findings (e.g., Lerch et al., 1978). Solid earth tides were also modeled with (Love's numbers) $h_2 = .60$, $l_2 = .075$ and $k_2 = .29$. Α solid earth phase angle of 2.018° was obtained in the solution.

Also polar motion and Al-UTI variations were simultaneously estimated from 5 day segments of the Lageos data. A solar radiation pressure coefficient, C_r , was adjusted over each 15 day arc. The Jacchia (1971) atmospheric density model does not contain values at the altitude of Lageos and therefore an along track acceleration is also permitted to adjust in order to account for "draglike" effects discussed by Rubincam (1980) and also Smith and Dunn (1980).

¹ If the speed of light value of 299792.458 m/sec were to be used, the value of GM would be changed by -.167, equalling 398600.440 km³/sec².

4.0 EVALUATION OF THE RESULTS

GEM-9 was the gravity model adopted initially in our LAGEOS analysis. GEM-9 (for the 1979 time frame, which coincided with the beginning of our effort) was considered the best available gravity model developed from a data set strictly composed of conventional satellite observations. GEM-9 did, however, use an augmented laser ranging observation set which included some of the newest NASA systems tracking GEOS-3 and Starlette. Therefore, GEM-9 was a larger and considerably improved field over preceding oddnumbered (which designate "satellite-only") GEM fields like that of GEM-7. Figure 3 presents the estimated uncertainty of the coefficients found in GEM-9. These error estimates were obtained from the scaled formal uncertainties of the solution obtained through an analysis against independent data (see Lerch et al., 1975 and 1977). Based upon a calibration with surface gravity a scale factor of $\sqrt{10}$ was derived to relate our formal noise only error estimates to the "true" uncertainty in the fields. Similar tests made with altimeter data confirmed that this scale factor was acceptable but somewhat conservative. The scaling factor was further confirmed from orbital data through the analysis of satellite resonant effects (Wagner and Lerch, 1978).

Based upon this scale factor $(\sqrt{10})$ the estimated accuracy of GEM-L2 is compared to GEM-9 in Table 4 for the longest wavelength terms in the model through degree and order 4. The actual coefficient differences between GEM-L2 and GEM-9 are also shown for these same terms. The highly accurate laser tracking data, together with Lageos' unique

OF POOR QUALITY 12 N 33 5 5 28 33 ESTIMATED ERRORS FOR GEM 9 (UNITS = 10^{-9} FOR FULLY NORMALIZED HARMONICS N R 3 24 R R 3 R 5 2 2 1 2 6 50 50 51 5 8 2 4 ř FIGURE 3 5 2 ならなられるれ ţ۵ . ហ្គ **ក្រសួលក្រសួលស្នា** 22 N F N N M M M M M M 77 ORDER 9 3 5 5 232300000051252 ñ e F F 20 **66611102555555** 2 0 ò e 80 ~ 5 C ю 1.7 Ð w) 3 G n 0 5 ŝ G **NNNNN44949494944999666666** O погеорги и стири и 338930

16

8.

ORIGINAL PAGE IS

, ^{*}

:4

The second

sensitivity to this portion of the field, accounts for the improvements indicated in Table 4. However, since GEM-L2 contains the GEM-9 data set, an independent verification of these accuracies was sought. An independent verification of these accuracies (mostly for terms where x-m is even) has been performed at NGS/NOAA (Wagner, 1982). A comparison of 24 hour satellite longitude accelerations observed through the study of mean elements was compared to those calculated from GEM-L1 (Lerch and Klosko, 1981) and GEM-L2 as shown in Table 5. The results for each of the eight 24 hour satellites are shown in Table 6.

The low degree and order portion of the gravity field cause long period changes in the longitude of deeply (librating) 24 hour satellites. These resonant perturbations commonly are seen as either long period librations of the longitude of the spacecraft from its nearly stationary position or as a secular drift in By evaluating several year histories of the longitude. spacecraft's mean Kepler coordinates and comparing these with the calculated trajectories from given geopotential models, one obtains a very good independent measure of the accuracy of the fields at lowest degree and order where *l*-m is even thereby satisfying the resonance condition (principally terms $CS_{2,2}$, $CS_{3,1}$ and $CS_{3,3}$). Figure 4 shows the orbital evolution of the SYNCOM2 satellite (Wagner, 1972) indicating that the magnitude of the effect of $CS_{2,2}$ on the longitude of a stationary orbit can be several degrees over a few years.

TABLE 4

ESTIMATED INDIVIDUAL LOW DEGREE AND ORDER GODDARD GRAVITY MODELS IN CENTIMETERS COEFFICIENT ACCURACY FROM

$ \begin{pmatrix} l_{,m} \\ \alpha \end{pmatrix} = \begin{pmatrix} l_{,m} \\ \alpha \end{pmatrix} = \begin{pmatrix} \sigma J_{l,m} \\ \alpha \end{pmatrix} = \begin{pmatrix} \sigma J_{l,$	COEFFICIENT	UNCERTAINTY GEM9	UNCERTAINTY GEM-L2	ACTUAL CC DIFFERENC MINUS ((iefficient :e (gem—9) 3em—L2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(<i>L</i> ,m)	σJ _{f,m}	oJ P,m	ΔC	SΔ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C2,0	0.4	0.3	۱ د:	
C4,0 C,S2,1 C,S2,1 2,2 2,2 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1	C3,0	1.0	0.1	'n	
C,S2,1 2,2 2,2 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1	C4,0	0.8	0.7		
2,2 3,1 0.9 - 2.5 3,1 4,8 2,3 - 4,4 3,2 7,2 3,4 - 7,7 3,2 7,2 3,4 - 7,7 3,3 8,6 3,2 - 7,7 3,3 8,6 3,2 - 7,7 4,1 4,5 3,2 - 13,1 4,2 4,4 3,3 - 1,5 4,3 4,1 2,4 - 1,5 4,3 4,1 2,4 - 3,0 4,3 4,1 2,4 - 1,3 2,4 - 1,3 - 1,3 - 3,0	C,S2,1	2.3	1.3	'n	9 I
3,1 4.8 2.3 4 3,2 7.2 3.4 - 7.7 3,2 7.2 3.4 - 7.7 3,3 8.6 3.4 - 7.7 3,3 8.6 3.2 - 13.1 4,1 4.5 3.7 - 15 4,2 4.4 3.3 - 1.3 4,3 4.1 2.4 - 1.3 4,3 4.1 2.4 - 1.3 4,3 4.1 2.4 - 3.0	2,2	3.1	0.9	- 2.5	ອ
3,2 7.2 3.4 - 7.7 3,3 8.6 3.2 -13.1 3,3 8.6 3.2 -13.1 4,1 4.5 3.7 -13.1 4,2 4,4 3.3 -1.3 4,3 4,1 2.4 -1.3 4,3 4,1 2.4 -1.3	3,1	4.8	23	4.	<u>.</u> :
3,3 8.6 3.2 -13.1 4,1 4.5 3.7 1.5 4,2 4.4 3.3 - 1.3 4,3 4.1 2.4 - 3.0 4,3 4.1 2.4 - 3.0	3,2	7.2	3.4	- 7.7	F. Y
4,1 4.5 3.7 1.5 4,2 4.4 3.3 - 1.3 4,3 4.1 2.4 - 3.0	3,3	8.6	3.2	-13.1	-24
4,2 4,4 3.3 - 1.3 4,3 4,1 2.4 - 3.0 4,3 4,1 2.4 - 3.0	4,1	4.5	3.7	1.5	œ
4,3 4,1 2.4 - 3.0 - - - -	4,2	4.4	3.3	- 1.3	1.2
	4,3	4.1	2.4	- 3.0	
4,4 D.D Z.4 – Z.4 – Z.4 –	4,4	5.6	2.4	- 2.9	-5.1

18

TOTAL: RSS

17.7 cm

8.1 cm

15.9 cm

4×4

 $\sigma J_{f,m} = \left[\sigma C_{f,m}^2 + \sigma S_{f,m}^2\right]^{1/2}$

And the second second

1

ORIGINAL PAGE IS OF POOR QUALITY

L */

•

÷ġ

TABLE 5 UPDATED EVALUATION OF RECENT GRAVITY MODELS

USING THE OBSERVED LONGITUDE ACCELERATIONS

OF EIGHT 24-HOUR SATELLITES

	(1970)	(1979)	(1981)	GEM-L1 (1981)	GEM-L2 (1982)
Weighted RMS Residual Accelerations	15.7	5.0	21.6	1.0	.80

Where the weighted residual acceleration is $(A_0 - A_c/\sigma_{A_0})^*$

* Ao is observed longitude acceleration

A_c is the calculated accelerations from gravity model

 $^{o}A_{o}$ is the estimated uncertainty ascribed to the observed longitude acceleration (~1. x 10⁻⁸ r/d²)

CONTRIBUTION OF GEOPOTENTIAL BY DEGREE TO ACCELERATION

L	CONTRIBUTION FROM FULL FIELD	CONTRIBUTION FROM ESTIMATED ERROR OF GEM-L2
2	3000 X 10 ⁸	2.6 × 10 ⁸
3	400	1.0
4	40	0.2
5	4	0.1
6	0.7	0.0

TABLE 6

fin

GRAVITY MODEL EVALUATION USING DATA FROM 24 HOUR SATELLITES

				RESIDUAL	(AOBS-AFI	ELD)	
	Ct	(A)		Standard			
Satellite Name	eyncnronous East Long.	Acceleration() (10 ⁸ rad; d ²)	GRIM 3 (1981)	Earth (1970)	GEM 9 (1977)	GEM L1	GEM L2
Skynet 1, 1	41.43	3004.3 (2.2)	- 23	12.9	8		(1982)
Skynet 1, 4	45.64	2840.9 (1.6)	1 68 1	10 0		11.0-	-0.56
Skynet 1, 5	47.88			0.121	0. X	1.50	1.00
Chinad 1 0			-12.0	14.7	5.6	0.57	00.00
oryriet 1, 8	50.54	2550.63 (1.11)	-21.0	13.8	4 9	14 0	
INTELSAT					ļ	17.n-	-1.42
ZF2/SYNCOM3	165.40	502.40 (1.56)	10.8	20.1	3.0	1 20	
ATS 5	254.96	-11.2 (0.4)	-22.0	0.0	ς α	67.1 F	18.0
INTELSAT					7	DO 'I	-0.25
1013	347.40	-104.77 (0.64)	60.5	37.3	-8.9	-1.77	0 67
INTELSAT							
2F31	350.40	182.31 (2.00)	19.4	12.8	3.9	-1.96	-1,75
(wt. rms)							
(residual)			21.6	15.7	5.0	1.0	0.80

ORIGINAL PAGE IS OF POOR QUALITY

*

13

おおい葬寺 鉄 空山美

6. VA

.

`

FIGURE 4 THE LONGITUDE OF SYNCOM 2

2.0

(From Wagner, 1972)

27

GEM-L2 overall satisfies these accelerations to their requisite accuracy. This is shown in Table 5 where the weighted RMS acceleration residual is equal to 1.0 for GEM-L1 and 0.80 for GEM-L2. The contribution of the geopotential by degree to the longitude accelerations are shown on the bottom of Table 5 for the full values of the harmonic coefficients and also for the error estimates of They show that while the accelerations are Table 4. sensitive to the harmonic coefficients as high as degree 6, the GEM-L2 error estimates beyond degree 3 or 4 are not directly tested by these longitude accelerations. Hence, the accuracy of GEM-L2's higher degree terms cannot be tested by this method for they exceed the accuracy of the longitude accelerations themselves. However, since uo longitude acceleration residuals came close to approaching a 2.6 sigma error for the degree 2 contribution (see Table 5), it was concluded that our stated accuracies for the 6x6 portion of GEM-L2 are possibly conservative.

The simultaneous estimation of polar motion and Al-UTI variations from the a priori 5-day mean values² made an important contribution to both the stability of the gravity solution as well as improved station positioning. Separate gravity fields were made utilizing the 1979 and 1980 Lageos data, and were intercompared between themselves and with GEM-L2. The new polar motion and Al-UTI values made an improvement of 30% in the RSS coefficient difference to

²Bureau International De L'Heure (BIH) Circular D 5-day mean values using 90 day smoothing. Al-UTl=(Al-UTC)+(UTC-UTl) where (Al-UTC) is from the U.S. Naval Observatory Bulletin and (UTC-UTl) is from BIH.

ι,

4x4 over fields holding the polar motion and Al-UT1 values fixed at BIN (e.g., the RSS coefficient difference between the 1979 vs. 1980 solutions decreased from 11 to 8 cm with the adjustment of polar motion - see Table 7). The 5-day mean polar motion values themselves were well determined in GEM-L2 and have a precision of about 10 cm. Figures 5 and 6 show examples of the corrections made to BIH (Circular D values) polar motion in GEM-L2 for the X and Y coordinates during 1980. Adjustments of up to 96 cm are seen from the a priori values. The full set of GEM-L2 polar motion and Δ LOD (changes in length of day) computed from the Al-UT1 values are found in Tables 8 and 9.

In the procedure with laser data, even after one station's longitude is held fixed, a singularity still exists for each orbital arc between the positioning of the satellite's longitude (node) and the earth's rotation The three 5-day mean values of Al-UTL in each (A1-UT1). 15-day arc are good to within an undetermined constant and hence one value is held fixed at the a priori value. The three mean values are differenced to provide two accurate values of 5-day mean ALOD and are listed for each arc in Tables 8 and 9. In order to benefit from the adjusted Al-UT1 values in the computation of orbits, the specific arcs used in GEM-L2 or arcs contained within these 15-day intervals must be employed due to the discontinuity. Using this procedure the values recovered in GEM-L2 were used in our orbital analysis and provided the means for correcting the a priori values of Al-UT1 in our test arcs. The use of this corrected information greatly improved our orbital results as subsequently shown.

TABLE 7

Į,

THE EFFECT ON THE GRAVITY FIELD OF

SOLVING FOR POLAR MOTION

(VALUES ARE RSS COEFFICIENT DIFFERENCES TO 4x4 IN CM)

÷ z

r **a**

	WITHOUT POLAR MOTION	WITH POLAR MOTION	(IMPROVEMENT %)
LAG'79 V. LAG'80	10.8 cm	8.2 cm	32%
LAG'79 V. GEM-L2	6.7 cm	5.1 cm	31%
LAG'80 V. GEM-L2	5.9 cm	4.8 cm	23%

ORIGINAL PAGE IS OF POOR QUALITY

. •

٩ð

25

~*

Satellite positioning accuracy directly reflects on the capabilities of using SLR to monitor tectonic motions and deformations. GEM-L2, by improving the force modeling on the Lageos orbit, yields a more accurate ephemeris than previously available, which in turn improves the accuracy of the estimated station coordinates and their inter-station improvements in orbital accuracy are The distances. discussed at length in the next section. Typically, the post-fit RMS of the range residuals (normal points) on Lageos when using GEM-L2 in a 15 day arc is on the order of 10 to 15 cm. Consequently polar motion and Al-UT1 errors, which produce range residuals of this magnitude or in excess of it, map into the positioning of the stations with respect to the orbit and must be accounted for if stable station position solutions are to result. This is clearly shown in the results presented in Table 10.

Table 10 shows a comparison of laser interstation distances for 8 "base" stations using two independent solutions. The values in Table 10 are the average error in the magnitude of the baseline differences. The Lageos data set (from 1979 through December of 1980) has been divided into two parts where each single month's data is split into two 15 day segments and each alternating segment contributes to one of these two independent solutions. Therefore, while the two solutions contain independent data, they both span the same time interval, have nearly equal representation for each station, and should average out (for the purposes of this comparison) any resulting plate motion over these baselines. The impact of the GEM-9 and GEM-L2 force models on station positioning are intercompared as well as the

OF POOR QUALITY

۰.

EPOCH TIME (YYMMDD)	END TIME (YYMMDD)	X OF POLE (ARC SEC)	Y OF POLE (ARC SEC)
790201 790206 790211 790216 790221 790226 790303 790303 790308 790308 790308 790308 790308 790308 790308 790328 790328 790402 790402 790402 790402 790402 790402 790402 790402 790402 790402 790402 790402 790402 790502 790502 790502 790502 790502 790608 790608 790613 790628 790608 790603 790603	790206 790216 790226 790226 790226 790303 790303 790313 790328 790318 790328 790328 790328 790328 790328 790328 790328 790402 790402 790402 7904417 7904427 7904427 7904427 7904427 7904427 7904427 7904427 790502 790502 790502 790502 790502 790502 790608 790628 790628 790628 790628 790628 790628	0.04236 0.03006 0.00962 01840 0.00731 0234 02427 02390 07209 10478 12197 12915 13187 13487 13487 13713 14232 14232 14268 15193 14244 152930 0.12884* 12911* 14598* 09682 09682	0.06581 0.07124 0.06823 0.07566 0.06682 0.06682 0.06454 0.08268 0.10821 0.10821 0.108277 0.108777 0.12577 0.12577 0.14281 0.16053 0.16711 0.16053 0.16711 0.16053 0.16711 0.16053 0.28258 0.28166 0.283760 0.283760 0.28258 0.28468 0.28468 0.28468 0.28468 0.285760 0.28468 0.28468 0.28468 0.28588 0.28588 0.28588 0.28588 0.28588 0.28588 0.28588 0.2858
790713 790718 790723 790728 790802 790802 790807 790812 790812	790718 790723 790728 790802 790807 790812 790812 790817 790822	10153 08346 06815 06076 04733 02678 01391 00727	0.37976 0.38751 0.38973 0.39404 0.41488 0.41488 0.42905 0.42019 0.41940
790822 790827 790901 790906 790911 790916 790921 790926 791001 791006 781011	790827 790901 790906 790916 790926 790926 791001 791006 791011 791014	0.01985 0.01165* 0.07187 0.05219 0.05721 0.07387 0.07021 0.07021 0.09166 0.09349 0.10094 0.11009	0.42772 0.42513* 0.43264 0.43222 0.42335 0.42335 0.42368 0.42970 0.42970 0.42970 0.42970

TABLE 8 POLAR MOTION FROM GEM-L2

Insufficient data; poorly determined values

10

28

53

ł

TABLE 8 (CONTINUED)

*

FULAP NOTION FROM GEN-LE

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EPOCH TIME (SYMMND)	END TIME (YYMMDD)	(APC SEC)	1 OF FULL 1880 SEC 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	791016	791021	0.11346	0.38981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	791881	7910 <u>8</u> 4	0.11931	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(이상) 1 131(2) 1 245(2) - 4 (22)(2)	N.12101 A 10000	ktar Gittigitit k ava omanna arathete
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121931 701305	9 21 1 12 20 10 10 1 1 12 20 20	있는 1 김정부의 이 1 기정(1 명	to a service service Part of the service
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 2211920 22011112	ር ምል ሐዲም ምርብ ተሰጥ	ለም አምር አምር ሰ ተፈጥነት	n an
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 211119 22回1119	791120	0.15655	「「「「「「」」 「「」「「「」」「「」」「「」」「「」」 「「」」「「」」「
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7911.PG	741155	6.13841	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	791125	791130	0.14077	0 32170
791205 791216 $0, 14695$ $0, 30421$ 791216 791215 $0, 14422$ $0, 29476$ 791215 791225 $0, 14492$ $0, 29406$ 791225 791225 $0, 14298$ $0, 27804$ 791225 791225 $0, 14298$ $0, 27804$ 791225 791225 $0, 15036$ $0, 25186$ 900102 900107 $0, 13140$ $0, 24766$ 900107 000112 $0, 14440$ $0, 24766$ 900107 000112 $0, 13140$ $0, 24766$ 900122 900127 $0, 12263$ $0, 22665$ 900127 900206 $0, 11028$ $0, 220-6$ 900206 $0, 11028$ $0, 200601$ 900206 $0, 11028$ $0, 20061$ 900206 $0, 11028$ $0, 200625$ 900216 900221 $0, 07669$ $0, 19229$ 900226 900226 $0, 07474$ $0, 18940$ 900302 900017 $0, 05754$ $0, 19249$ 900302 900017 $0, 05152$ $0, 19245$ 900322 900017 $0, 05152$ $0, 19245$ 900322 900017 $0, 05152$ $0, 19245$ 900322 900017 $0, 02257$ $0, 19249$ 900327 900401 $9, 02257$ $0, 19245$ 900404 900466 $0, 02257$ $0, 19245$ 900411 900466 $0, 02257$ $0, 19245$ 900412 900466 -00724 $0, 22055$ 900414 -00724 $0, 22065$ <	791130	791209	0.14970	0.31194
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	791205	791210	0,14695	0.30421
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	791210	791215	0.14422	0.2747¢
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	791215	791220	0.14492	0.29806
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>291229</u>	791225	0.14258	
300167 00112 0.13036 0.24786 300117 0.0117 0.13140 0.24356 300117 300122 0.12183 0.22096 300127 0.12263 0.22645 300127 0.02266 0.11028 0.22645 800201 300206 0.11028 0.20565 800206 300206 0.11028 0.20565 800206 300206 0.11028 0.20596 800206 300206 0.11028 0.20598 800216 000211 0.09467 0.19269 800226 200221 800226 0.07467 0.19269 800226 200307 0.07744 0.18940 800302 800307 0.07744 0.18946 800302 800307 0.06152 0.19967 800312 800317 0.025152 0.19967 800312 800317 0.02577 0.19849 800322 800411 0.02357 0.19849 800322 800411 0.02357 0.19849 800411 800466 0.92856 0.19245 800411 800411 0.02311 0.20750 800411 800566 02238 0.2764 800521 800501 02385 0.22351 800521 800521 04532 0.27612 800526 800531 04636 0.25296 800526 800526 04532 0.27612 800526 800526 04532 0			0.10174 6 (FCC)	1月1日間1月1日(1月1日) 1月1日日日(1月1日)
30010 30011 30011 0.14140 0.1405 30011 30012 0.13140 0.1405 30012 30012 0.13263 0.23096 30012 30012 0.13263 0.23096 30012 300206 0.11028 0.22645 300206 500211 0.09687 0.20555 300206 500211 0.09687 0.20555 300216 200226 0.07467 0.19269 300226 300302 0.07474 0.18940 300302 300307 0.073744 0.18940 300302 300307 0.067611 0.18773 300302 300307 0.067512 0.19269 300302 300307 0.067511 0.18745 300302 300307 0.024511 0.18745 300302 300307 0.024511 0.19947 300302 300401 0.02357 0.19849 300401 300406 0.02256 0.19245 300406 0.02256 0.19245 300401 300406 0.22351 300406 0.02231 0.22351 300406 0.02231 0.22351 300406 -00724 0.22956 300411 900426 02285 300426 02865 0.22351 300526 300516 02865 0.22351 300526 300526 04502 0.24491 300526 04502 0.24491 300526 0450	201011202 00001007	igigiki g kgt. Mu≣ana d da	9 13440 8.12898	ಲ್: ಭಾಭವಾರು ಗ್ ಭಾಭವಾರು
300117 300122 0.12133 0.23095 900122 900127 0.12263 0.22665 800127 0.12263 0.22665 800201 900206 0.11028 0.20601 800206 900206 0.11028 0.20555 900206 900211 0.96857 0.20555 900216 900221 0.97467 0.19529 800216 900226 800302 0.67474 0.18940 800302 800307 0.67374 0.18773 800312 800307 0.67474 0.18773 800312 800307 0.065152 0.19367 800312 800307 0.02451 0.18773 800312 800327 0.02451 0.19994 800322 800327 0.02451 0.19949 800322 800327 0.02451 0.19949 800327 900401 800406 0.02057 800411 800406 0.02056 0.19245 800426 800501 02285 0.22351 800426 800501 02285 0.22351 800511 800526 02285 0.22351 800521 800526 04502 0.24491 800526 800531 04502 0.24491 800526 800531 04502 0.24491 800526 800526 04502 0.24491 800526 800526 04528 0.26776 800645 04502 0.26776	202021203 20202113	source and the second sec	0.19130	in a second de la companya de la co En la companya de la c
800122 800127 0.12263 0.22665 800127 300201 0.11891 $0.220-6$ 800201 800205 0.11028 0.20501 900206 800211 0.9687 0.20555 900211 800216 0.9687 0.20598 800216 000221 0.97669 0.19529 800226 800302 0.97474 0.19269 800302 800307 0.07374 0.18940 800302 800307 0.07374 0.18773 800312 800307 0.05152 0.19367 800312 800327 0.02451 0.19947 800322 800327 0.02451 0.19947 800322 800327 0.02451 0.199494 800322 800327 0.02451 0.19947 800327 900401 0.02357 0.19849 900401 800406 0.02357 0.19849 900401 800466 0.02357 0.19245 800411 0.00381 0.20750 800411 800466 02285 0.22351 800426 800501 02865 0.22351 800506 800511 02865 0.22351 800526 800521 03841 0.23761 800526 800521 04502 0.24491 800526 800526 04502 0.24491 800526 800526 04528 0.26776 800615 062822 0.26776 800615 <	800112		Ø. 12183	r. Sittes
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	889122	200127	õ. 12263	0.22665
$\begin{array}{llllllllllllllllllllllllllllllllllll$	800127	800201	0.11801	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	800201	50020A	0.11028	លុ ុ ភ្លូមភ្លេះស្នាវ
000211 800216 0.08302 0.20398 800216 000221 800221 0.07467 0.19269 800226 800302 0.07474 0.19269 900226 800307 0.07374 0.18940 800302 800307 0.07374 0.18160 900307 0.0012 0.06761 0.18773 800312 800327 0.04211 0.18773 800312 800327 0.02451 0.19967 800322 800327 0.02451 0.19994 900327 300401 0.02357 0.19849 900401 800406 0.02056 0.19245 900406 800411 0.00381 0.20365 800411 800466 00724 0.20956 800426 00724 0.20750 800421 800501 02231 0.21768 800426 800501 02365 0.22346 800501 800526 02365 0.22351 800506 800511 0.23594 0.22394 800521 800526 04372 0.23690 800526 800531 04830 0.25296 800521 800526 04372 0.26201 800526 800531 04832 0.25296 800526 800531 04652 0.26776 800655 04652 0.26776 800645 05282 0.27515 8006625 04652 0.26776 8006625 0646	600205	800811	0.09687	0.20555
800216 000211 0.07669 0.19529 800226 800302 0.07474 0.18940 800302 800307 0.07374 0.18160 800302 800307 0.07374 0.18773 800312 800317 0.05751 0.18773 800312 800322 0.04221 0.18773 800312 800322 0.04221 0.18773 800317 800322 0.04221 0.18745 800322 800327 0.02451 0.19944 800322 800327 0.02451 0.19944 800327 300401 0.02356 0.19245 900401 800406 0.02056 0.20355 800411 800416 00724 0.20956 800411 800566 02221 0.21768 800426 800501 02738 0.22346 800501 800516 02865 0.22351 800526 800521 03841 0.23751 800526 800526 04502 0.24491 800526 800531 04230 0.25296 800531 80665 04194 0.25609 800655 04502 0.26776 800615 064552 0.26776 800615 064652 0.26776 800620 800625 04652 0.26776 800620 800625 063931 0.29731	000211	800381E	0.0 <u>8</u> 302	0.20398
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800216	000221	8.87669	0.19529
300226 300302 300302 0.07374 0.18340 800302 300307 0.07374 0.18773 800307 000317 0.06761 0.18773 800312 300317 0.065152 0.19367 800317 800322 0.04281 0.18745 800322 800327 0.02451 0.18745 800327 900401 0.02357 0.19849 900401 800406 0.02056 0.19245 800406 800411 0.00381 0.20305 800411 800406 0.02211 0.20305 800411 800416 00724 0.20956 800426 800501 02738 0.22346 800501 800506 02365 0.22351 800506 800511 03924 0.23294 800511 800526 04502 0.24491 800526 800531 04336 0.25296 800531 800605 04502 0.24491 800526 800531 04502 0.24491 800526 800531 04502 0.26776 800615 04502 0.26776 800615 04502 0.26776 800615 800625 04522 0.26776 800615 800625 04612 0.27512 800620 800625 04612 0.27512 800620 800625 04612 0.27512	800221		1.1.1/46/ 8. 87473	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SENECE Connono	in the second	មុខស្វារ អ្	N. 10040 N. 10040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56993992 999797	en na ser	ល្សស្រុកស្រុក ពុំរដ្ឋាភិភាគី។	0.18773
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800300 800312		0.05152	6,19367
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800317	800022	0.04221	0.18745
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800322	800327	0.02451	0,19994
900401 900406 0.02056 0.19245 900406 900411 0.00381 0.20365 900411 800416 00724 0.20956 900416 800421 00151 0.20750 800426 800501 02221 0.21768 800426 800501 02738 0.22346 800501 800506 02865 0.22351 800506 800511 03924 0.23294 800511 800516 04372 0.23690 800516 800521 04302 0.24491 800526 800531 04502 0.24491 800526 800531 04502 0.25296 800531 800605 04194 0.25609 800605 900610 05277 0.26201 800615 04652 0.26776 800615 04652 0.27515 800620 800625 04612 0.27612 800620 800630 03231 0.27612	896327	300401	0.02357	0.19849
800406 800411 0.00381 0.20385 800411 800416 00724 0.20956 800416 200421 02151 0.20750 800421 200426 02221 0.21768 800426 800501 02738 0.22346 800501 800506 02865 0.22351 800506 800511 03924 0.23294 800516 800516 04372 0.23690 800516 800521 04372 0.23690 800526 800521 04502 0.24491 800526 800531 04830 0.25296 800531 800605 04194 0.25609 800605 800615 04652 0.26776 800615 04652 0.26776 800615 04612 0.27612 800620 800625 04612 0.27612 800625 04612 0.27612 800625 04612 0.27612	800401	860406	0.02056	0.19245
800411 800416 00724 0.20956 800416 900421 00151 0.20750 800421 900426 02221 0.21768 800426 800501 02738 0.22346 800501 800506 02865 0.22351 800506 800511 03924 0.23294 800511 800516 04372 0.23690 800516 800521 043841 0.23761 800526 800521 04502 0.24491 800526 800531 04830 0.25296 800531 800605 04194 0.25609 800605 800615 04652 0.26776 800615 800620 05282 0.27515 800620 800625 04612 0.27612 800620 800625 04612 0.27612 800625 04612 0.27612 800620 800630 03231	800406	800411	0.00381	6.20385
800416 800421 00101 0.20700 800421 800426 02221 0.21768 800426 800501 02738 0.22346 800501 800506 02865 0.22351 800506 800511 03924 0.23294 800511 800516 04372 0.23690 800516 800521 03841 0.23761 800526 800526 04502 0.24491 800526 800531 04830 0.25296 800531 800605 04194 0.25609 800605 800615 04252 0.26776 800615 04652 0.26776 800615 05282 0.27515 800620 800625 04612 0.27612 800620 800625 03231 0.29093	800411	809416	00724	0.20956
800421 800426 02221 0.21763 800426 800501 02738 0.22346 800501 800506 02865 0.22351 800506 800511 03924 0.23294 800511 800516 04372 0.23690 800516 800521 03841 0.23761 800526 800526 04502 0.24491 800526 800531 04830 0.25296 800526 800651 04494 0.25609 800605 04194 0.25609 800605 800615 04652 0.26776 800615 800620 05282 0.27515 800620 800625 04612 0.27612 800625 04612 0.27612 800625 03231 0.29083	800416	200421	00101	0.20700 6 31740
800428 800501 02100 0.22351 800501 800506 02865 0.22351 800506 800511 03924 0.23294 800511 800516 04372 0.23690 800521 03841 0.23761 800526 800526 04502 0.24491 800526 800531 04830 0.25296 800531 800605 04194 0.25609 800605 800615 05277 0.26201 800615 04652 0.26776 800615 05282 0.27515 800620 800625 034612 0.27612 800625 800630 03231 0.29083	800421 000422	COURCE CONSCI	- assa	0. 20042 0. 20042
800506 800511 03924 0.23294 800511 800516 04372 0.23690 800516 800521 03841 0.23761 800521 800526 04502 0.24491 800526 800531 04830 0.25296 800531 800605 04194 0.25609 800605 800610 05277 0.26201 800615 04652 0.26776 800615 05282 0.27515 800620 800625 03231 800625 800630 03231	2009460 200501	KONTAK KONTAK	02865	0.22351
800511 800516 04372 0.23690 800516 800521 03841 0.23761 800521 800526 04502 0.24491 800526 800531 04830 0.25296 800531 800605 04194 0.25609 800605 800610 05277 0.26201 800619 800615 04652 0.26776 800615 05282 0.27515 800620 800625 03231 0.29093	888586	866511	03924	0.23294
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800511	800516	04372	0.23690
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800516	800521	03841	0.23761
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800521	898526	04502	0.24491
900531 900605 04194 0.25609 900605 900610 05277 0.26201 900610 800615 04652 0.26776 900615 9.0620 05282 0.27515 900620 800625 04612 0.27612 900620 800625 03231 0.28083	800526	800531	04830	0.25296
800605 80061005277 0.26201 800610 80061504652 0.26776 800615 80062005282 0.27515 800620 80062504612 0.27612 800625 80063003231 0.226923	800531	800605	04194	0.25609
809618 80961504652 0.26776 809615 80962905282 0.27515 809629 80962504612 0.27612 809625 80963903831 0.28083	800605	800610	05277	0.26201
800615 80062000282 0.27515 800620 80062504612 0.27612 800625 80063003331 0.29083	800610	889615	64658	0.26776
	800615	auniteriti occessor	UD222	U.27010 8 8 8 8 1 8
	000620 200625	ouudau Rüürisü	04016 03831	U.CCDIC M.PAMAR

ORIGINAL PAGE IS

TABLE 8 (CONTINUED)

FOLAR MOTION FROM GEM-L2

۰**۴**

EPOCH TIME (YYMMDIO)	ЕНД ТІМЕ (ҮҮНИДД)	X OF POLE (APC SEC)	Y OF POLE (ARC SEC)
866761	888786	05511	9.29827
800706 000711	200711 000712	04163	N. EMERAS A constant
300711 800716	000710 200721	ter in the second s Second second	n snitt
300721	800726	03092	0.31439
800726	800731	03368	0.32159
800731	800805	03553	6.31654
809805	800810	02007	R. 32481
88887878 Cogoie	899810 Daacoa	USU24 - 09579	U.Sedeu G Socos
888828	800825	01953	6.33423
800825	800330	02583	0,33547
800830	800904	02577	0.34264
800904	800909	01982	0.34304
800707 999914	5899714 CAACIC	UE4U4 _ 01700	0.34017 6 94546
808919	898924	01904	0.35156
800924	800929	02451	0.35282
800929	801004	00803	0.35642
801004	801009	01127	0.35375
801009 801009	801014 901019	- 00497 - 00491	8.38480 6 97669
801019	861624	00160	0.36526
801024	881829	00945	0.37419
881829	801103	0.00243	0.37585
801103 001100	801108	9.00587 6.01000	0.36965
SB1113	801118	0.010CC 0.01466	0,00007
801118	001123	0.02706	0.37407
801123	801128	0.03433	0.38633
801128	801203	0.04107	0.37814
801203 801208	801298 961212	9.04463 8 85899	U.JAABO G ooses
801213	801218	0.05987	0.37261
801218	801223	0.06229	0.37020
801223	801228	0.07107	0.37347
891228 010100	810102	0.07320 0.07500	0.36536 0 04150
81010G 810107	810112	0.07000 A.07839	0.30105
810112	810117	0.08586	0.35664
810117	810122	0.07958	0.35986
810122	810127	0.08426	0.35575
810127 916961	810201 816264	8.88827 8 89155	0.34376 a porea
810206	810211	0.09535	0.33137
810211	810216	0.09981	0.33657
810216	810821	0.09405	0.33510
818221	810226	0.09683	0.31882
010220 810303	819393 819393	0.10070 0 09977	8.31887 6 30074
810308	810313	0.0000r 0.09328	0.38899

30

TABLE 8 (CONTINUED)

*

٠

°.

. .

EPOCH TIME (\'\'MMDD)	END TIME (YYMMDD)	X OF POLE (ARC SEC)	Y OF POLE (APC SEC)
810313 810318 810323 810328 810402 810407 810407 8104422 8104422 8104427 810502 810502 8105522 8105522 8105522 8105522	810318 810323 810328 810402 810407 810412 810412 810422 810427 810502 810507 810522 810522 810522 810527 810522	0.09790 0.10123 0.11215 0.09394 0.09140 0.09087 0.09544 0.10647 0.09547 0.10013 0.09482 0.09274 0.10048 0.09377 0.11247	0.01154 0.00774 0.28541 0.28541 0.29940 0.29539 0.29124 0.27951 0.26480 0.26164 0.25310 0.26566 0.25009 0.24716 0.24716
810601 810606 810606	310606 310611	0.11047 0.10014 0.08707	0.24549 0.24549 0.23571

POLAR MOTION FROM GEM-L2

TABLE 9

*

CHANGE	IH	LENGTH	ŰF	DAY	FROM	GEM-L2
MIDPOINT DF (YYMMDD)	ATE.]	OELTA LOD (SEC)
790206 790211						. 66236 . 66276
790221 790226						.00306+ .00360+
790308 790313						.00283 .00281
790323 790328						.00056 .00370
790407 790412						.00277 .00316
790422 790427						. 00074 . 00000
790507 790512						.00299 .00298
7%0522 790527						.00309 .00259
790608 790613						.00241 .00222*
790623 790628						.00198* .00292*
790708 790713						.00221 .00246
790723 790728						.00151 .00182
790807 790812						.00248 .00266
790822 790827						.00199* .00209
790906 790911						.00232 .00260
790921 790926						.00247 .00229
791006 791011						.00321 .00264

a

.

Insufficient data; poorly determined value.

0

4. S B

32

TABLE 9 (CONTINUED)

٠.

1

•

Change In	LENGTH OF	DAY FROM GEM-L2	
DPOINT DATE (AMMND)		DELTA LOD (SEC)	
791 <i>021</i> 791026		. 90290 . 90258	
791105 791110		. 60269 . 60214	
791120 791125		.00251 .00246	
791205 791210		.00235 .00248	
791220 791225		.00243 .00242	
800107 800112		.00247 .00249	
800122 800127		.00289 .00215	
800206 800211		.00222 .00199	
800221 800226		.00272 .00222	
800307 800312		.00221 .00221	
800322 000327		.00260 .00241	
800406 800411		.00248 .00278	
800421 800426		.00229 .00255	
800506 800511		.00238 .00286	
800521 800526		.00215 .00214	
800605 800610		.00214 .00219	
800620 800625		.00176 .00160	

TABLE 9 (CONTINUED)

¥،

CHANGE IN	lehgth	OF DAY	penn gen-la
MIDPOINT DATE USTMMDDO			ひとして作したいだい いったしてい
800057006 80005711			, CONTRAS , CONTA ST
్రిగిగిగొడి 1 కంపరుగొడిట			្ល ស្ថាវេ ដូចនិង សូមឆ្នាំ ឬ ភ្លូង។
01000000 9160810			, 000181 , 000126
skinsen Richters			. 60601 8080 . 60601 9069
នទាំងទាំង ទទំពងទាំង			, 1964) 262 , 1965a) 17
000924 000924			. 603218 . 603296
801004 801009			. 60:201 & . 00:209
5151519 851524			. Hitaroù . Hitaroù
061163 801100			. 00262 . 00270
801118 001123			. (1618)74 . (16125)1
901200 901208			. 111249 . 11211
001218 901220			. 06266 . 06214
010100 010107			.00224 .00197
810117 810122			. 00252 . 00214
\$16201 \$16206			. 00178 . 00224
810216 810271			.00195 .00219
819393 819398			. 00260 . 00350

1

×11

TABLE 9 (CONTINUED)

CHANGE IN LENGTH OF DAY FROM GEM-L2

MIDPOINT	DATE	DELTA	LOD
ር አግን ኮሎበ	() [) ()	(SB	5 C 0

	•
810318	.00255
810323	.00257
810402	. 88381
810407	. 88361
810417	.00310
810422	.00262
810502	.00324
810507	.00254
810517	.00245
810522	.00228
810601	.00295
810606	.00218

a priori modeling of polar motion and Al-UT1 with that obtained from LAGEOS for their contribution to station positioning. An excellent 1.8 cm agreement is obtained for the baseline differences of these two solutions when using the gravity and Lageos earth orientation parameters of the GEN-L2 solution. The 28 baseline-comparison from the GEM-L2 model is shown as a histogram in Figure 7.³ All 28 baseline differences from these alternating 15-day arcs are shown in Figure 8. GEM-9 with a priori polar motion and Al-UT1 values, which reflects the state of the art prior to the Lageos analysis as performed by ourselves and many others, yields about a four-fold worse agreement. These results clearly show that the new LAGEOS polar motion and Al-UT1 and the gravity of GEM-L2 are needed to achieve the 1.8 cm baseline comparison.

Α comparison was also made dividing the data chronologically into 1979 versus a 1980 а set of solutions. In an ideal environment, the sole difference between this comparison and that described in Table 10 would be the plate motion which has resulted over this year. However, in this later case, data distribution and station participation also varied and must be considered. However, the results are still quite satisfying and are shown in Table 11. A 6 cm average has been obtained for the total position differences over these two years when using GEM-

³The laser system at Westford, Mass. (station number 7091) seems to be somewhat inconsistent in longitude as compared with the other sites. The longitude coordinate is most effected by any range bias. See Christodoulidis and Smith, 1981.

				CEM 13	
	w/BIH** POLAR MOTIC AND A1-UT	GEM-9	w/BIH POLAR MOTION AND A1-UT1	w/LAGEOS w/LAGEOS POLAR MOTION & BIH A1 – UT1	w/LAGEOS POLAR MOTION AND A1-UT1
3ASELINE AGREEMENT FOR EIGHT "BASE" STATIONS ALL 28 BASELINES)	7.2 cm	6.0 cm	6.9 cm	4.7 cm	1.8 cm
'BASE STATIONS ARE:	7063 7086 7091 7115 7114 7114 7907 7907	GSFC, MD FT. DAVIS, TEXAS YARRAGADEE, AUST WESTFORD, MA GOLDSTONE, CA OWENS VALLEY, CA AREQUIPA, PERU ORRORAL, AUSTRAL	RALIA		ŗ
*THE DATA HAS BEEN D	IVIDED INTO AL	TERNATING 15 DAY SI	EGMÈNTS AND THE	REFORE BOTH	

**BIH CIRCULAR D 90-DAY SMOOTHED VALUES

SOLUTIONS HAVE SIMILAR AND UNIFORM DATA DISTRIBUTION FROM THESE SITES.

37

a s

ORIGINAL PAGE IS OF POOR QUALITY

, **.**

.

۰.

BASELINE COMPARISON FROM TWO INDEPENDENT LAGEOS DATA SETS SPANNING

TABLE 10

. .

L2. With GEM-L2 the baseline stability over the United States is 4.1 cm between 1979 and 1980 solutions, again, a good result.

An error analysis has been performed to give an estimate of the expected baseline error due to the estimated uncertainties in the GEM-L2 model for these 28 "base station" baselines. In this analysis, the actual normal matrix obtained from 2 years of LAGEOS tracking was employed. Table 12 presents these results indicating that the gravity field error in GEM-L2 is the cause of 1.7 cm average error on these baselines. However, 2 years of data is averaged (in a geometrical sense about these stations) to form these results. Also the gravity field error should become somewhat worse for more limited data distributions found in annual or monthly solutions.

The tracking station coordinates obtained from GEM-L2 are presented in Table 13. These coordinates refer to the optical axes of the laser instruments. These station coordinates, unlike the ones discussed above, represent values derived from the entire 2 1/2 years of Lageos tracking. As such, they most likely average out any interceding plate motion over 1979 to 1981. They, however, represent a starting set of consistent coordinates to be utilized with GEM-L2.

į.

FIGURE 8 A MEASURE OF SLR BASELINE PRECISION FROM ALTERNATING ARCS OF 1979 THROUGH 1980 LAGEOS DATA

BASELINE AGREEMENT FOR 8 BASE STATIONS (AVG = 1.8 cm) WHEN USING GEM-L2 GRAVITY AND LAGEOS POLAR MOTION

TABLE 11

GEM-9 VERSUS GEM-L2 STATION POSITIONING COMPARISON

SOLUTION (a) 1979 LAGEOS DATA (b) 1980 LAGEOS DATA

TOTAL POSITION DIFFERENCES FOR 8 BASE STATIONS (80–79 SOLUTIONS)

.

	GEM-	6	GEM	-L2
STATIONS	w/BIH POLAR MOTION*	w/LAGEOS POLAR MOTION*	w/BIH POLAR MOTION*	w/LAGEOS POLAR MOTION*
STALAS (GSFC)	40.9 cm	17.3 cm	18.1 cm	7.1 cm
FT. DAVIS (TEXAS)	17.7	13.1	10.2	8.3
YARLAS (AUSTRALIA)	24.8	18.9	13.8	8.5
HAYSTK (MASS.)	38.0	21.9	18.3	4.5
OWNSVL (CAL.)	34.1	26.4	15.0	2.3
GOLDST (CAL.)	44.4	31.4	12.1	5.1
ARELAS (PERU)	12.1	7.3	19.5	5.8
ORRLAS (AUSTRALIA)	27.7	9.8	24.1	6.8
(AVG)	30.0	18.3	16.4	6.0
	BASEL	INE DIFFERENCES		
ALL GLOBAL AVERAGE BASELINE DIFFERENCE (28)	14.6	12.9	8.0	5.3
USA BASELINE AVERAGE DIFFERENCE (10)	11.3	10.2	5.2	4.1
*AND A1–UT1 FROM RESPECTIV	VE SOURCES. BIH CII	RCULAR D 90–DAY SM	OOTH VALUES	

ORIGINAL PAGE IS OF POOR QUALITY

.

0

41

1

111 X 111

TABLE 12 BASELINE UNCERTAINTIES COMPUTED FROM

ł

GEM-L2 GRAVITY FIELD ERRORS

ORRLAS 7943	1.5	1.9	2.5	1.5	1.8	1.8	2.0	
AREŁAS 7907	1.8	2.1	1.3	2.0	2.4	2.5		
GOLDSTONE 7115	2.1	1.2	1.8	2.0	0.5			
OWENS VALLEY 7114	2.2	1.2	1.7	2.3				entimeters)
HAYSTACK 7091	0.5	2.2	1.1					Ŭ)
YARLAS 7090	1.4	1.4						
FT. DAVIS 7086	2.2							
	7063	7086	0602	7091	7114	7115	, 7907	

ORIGINAL PAGE IS OF POOR QUALITY

į.

AVG = 1.7 cm

ç,

TABLE 13. GEM-L2 STATION COORDINATES

HAME	HUMBER	1, 1- 1 line side best lee * 1mr 4. 1, 1 1 − 1	1. 1 1 2' 6. 3 (7) 100 100 100 - 300 - 5	ting Bai
		17 12 , 1 12, 1725 1	INFLERED	(METERS)
004079	7051	-2516892.543	-4198849.621	doreata teo
01/01/01	7052	-2516892.536	-4198849.345	4026414.005
SANTIE	7062	-2428824.909	-4799755.613	3417274.698
STALAS	7063	1130718.148	-4831370.304	3994089.550
PHMLAS	7069	917962.324	-5548373.708	2998778.273
FEHE A	7082	-1735995.810	-4425052.079	4241433.323
FEHREI	7083	-1735995.266	-4425053.706	4241432.565
F LUHUS	<u> 1986</u>	-1330123.387	-5328531.275	3236152.478
ILMOPIDE Vooide	rticir Tood	-1339123.944	-5328531.908	3236151.293
LARLAD	- 979 780 (-2389010.270	5043331.356	-3078527.399
ninain. Miggaa	7071		-4457281.176	4296818.441
SAMAAI	7076 7096		1364697.593	1034163.840
MLAGMY	7101	1121242-235	-1001100 200	-1568977.450
NL0402	7102	1120590 040	-400110 <u>2.00</u> 2	2994150.974
ML0601	7103	1138688.783	-4821251 571	2224112.ND1 2224112.ND1
ML0701	7104	1131099.348	-4221199 502	2003175 005 2003175 005
GSFCLS	7105	1130723.076	-4831353.197	2004190 224 9224190 224
COLRES	¥112	-1240676.533	-4720467.396	4004400 VID 000410000004
OMNSU2	7114	-2410421.637	-4477887.289	3838689 356
GLIST2	7115	-2350860.745	-4655550.950	3661000.415
HAMXAA	7120	-5466000.857	-2404413.491	2242229.839
HOLLAS	7210	-5466428.652	-2404100.627	2241560.366
HFELAS	7907	1942795.076	-5804077.481	-1796919,935
HUPLAS	7981	-1936757.663	-5077708.928	3331923.314
NH ILHS	7929	5186470.620	-3653854.157	-654322.535
UMPLHS	7943	-4447550.496	2677132.438	-3694997,182

HOTE:

STATION	7052	IS	THE	1981	OCCUPANCY	OF	PUTNCY
STATION	7883	IS	THE	1981	OCCUPANCY	ŨF	BEAR LAKE
STATION	7087	\mathbf{IS}	THE.	TLF:S	OCCUPANCY	ŨF	FORT DAVIS

GM = 398600.607 KM**3/SEC**2 WITH C = 299792.5 M/SEC.

5.0 ORBITAL ACCURACIES ON LAGEOS

Dynamic satellite geodesy implies that improvement in the modeling of the forces acting upon the satellite should yield less error in the estimation of station positions and parameters describing the location of the earth with respect to the satellite's orbital plane. With laser systems routinely producing range observations at the 10 cm level of accuracy, a great deal of improvement was possible in our modeling of the geopotential to fully exploit this data to improve the capability of measuring plate tectonic This was the principal direction of our work. activity. Initial error analysis mapping the uncertainties found in each of the coefficients of GEM-9 revealed that LAGEOS orbital errors of \pm 1m or more could be expected. This analysis was made using the linear perturbation theory developed by Kaula (1966, pp 40 and 49). Each coefficient's uncertainty was used to estimate the magnitude of the resulting total perturbation error on LAGEOS for each harmonic constituent. Since most of the simple spherical harmonics give rise to a number of perturbations at different frequencies on LAGEOS' orbit, these were combined as their RSS error for each term. Figure 9 shows the results of this analysis for the GEM-9 uncertainties. In Figure 9, the low degree and order field comes through as the strongest source of error with the exception of the resonance terms of order 6 and 7 (corresponding to LAGEOS's 6.4 orbital revolutions per day). The total RSS of all of the errors shown in Figure 9 is approximately \pm lm. This analysis was repeated at the conclusion of the development of GEM-L2 and is shown for the estimates of the GEM-L2

9

۰<u>:</u>

. 1

FIGURE 9

. **s**

coefficient errors in Figure 10. Based upon this analysis, LAGEOS orbital accuracies lie in the vicinity of 35 cm when using GEM-L2.

A direct measure of the orbital improvement gained through the utilization of GEM-L2 has been obtained through a series of tests using actual LAGEOS data. Some of these tests are very severe -- they are designed to give a magnified insight into orbit errors arising from the gravity Therefore, the accuracies which are seen may be field. considered as worse case phenomena, for they are tests where large data gaps have been imposed on the Lageos observation set. In the tests shown in Table 14, a fifteen day span of LAGEOS data is selected. The middle five days of data is then deleted so that the data which is utilized for the original orbit computations consist solely of the data available from the first and last five day data spans. This fifteen day test orbit over this middle five day interval is therefore completely independent of the data taken during this interval. This independent five day span of data is then used to calculate a second orbit. This five day orbit is differenced over its interval with that of the original fifteen day are in three components -- radially, along track and across track. Table 14 shows a sample (representative) of the results we have obtained. Over the two year period teated, GEM-L2 outperforms GEM-9 in all cases and gives results averaging 26 cm in total orbit position error which closely reflects the magnitude of error expected from our error analysis using the linear perturbation theory. These improved orbital tests of necessity incorporated the GEM-L2 polar motion and Al-UT1 values since the a priori values vere corrected for these 15 day arcs. It is this

RSS = 37 cm10 6 œ 3 **15** 15 m 1 , **real** 3 9 2 9 ORDER 5 2 4 2 -4 ξ 2 2 -3 m 2 m ŝ -1 3 S m Ś ŝ , i 2 9 19 œ m Ч 3 H 0 0 0 10 σ 2 m 3 80 ŝ DECKEE

. •

FIGURE 10 IT ERRORS (CEN

р

LAGEOS ORBIT ERRORS (CENTIMETERS) DUE TO ERRORS IN GEM-L2 HARMONICS original page 13 of poor quality

m

ŝ

З

Ц

, Č

ĝ

A DESCRIPTION OF A DESC

4

1

े हो म

0

Ľ,

improvement in the modeling of the gravitational forces on LAGEOS which enhances the utilization of LAGEOS laser data for the estimation of the tectonic plate motion and dynamics of the earth's rotation and polar wandering.

A second series of runs was made showing (Table 15) the RMS of fit to "normal" point laser observations created from the original range observation set. The use of GEM-L2 and the LAGEOS polar motion/Al-UT1 shows a factor of two improvement in our ability to fit these nearly "noiseless" observations. A typical RMS of fit to the normal points in 15 day arcs is about 10 cm when using GEM-L2 with LAGEOS polar motion and Al-UT1.

TABLE 14

.

LAGEOS ORBIT TEST:

15 DAY ARC WITH MIDDLE 5 DAY'S DATA DELETED

VS.

ORBIT FROM MIDDLE 5 DAY

RMS SATELLITE POSITION DIFFERENCES

			ACROSS	ALONG	
EPOCH	GRAVITY	RADIAL	THACK	TRACK	TOTAL
DATE	MODEL	(cm)	(cm)	(cm)	(cm)
3/80	GEM—9	7,9	81,7	59.7	101.5
	GEM-L2	3.4	17.9	27,1	32.7
2/90	CEM 0	20.4	7 9 0	070.0	001.0
2/00	GENI-9	20,4	78.0	270.0	281.8
	GEWI-LZ	2.2	7.6	13,1	15,3
12/79	GEM-9	17.5	15,2	73.0	76,6
	GEM-L2	10.7	4.6	23,0	25.8
11/70	GEM 0	F 1	21.0	90 G	00 7
11/15	GEM L2	10.7	31.0	02,0	00,7 E4 0
	GEIWI-LZ	10,7	32,9	41.8	
10/79	GEM-9	4,6	51.1	205,0	211.3
	GEM-L2	5.4	31.9	41.9	52,9

Estimated error in each orbit is 26 cm. As an example, since the error of 32.7 cm for the first case reflects errors from two orbits, the estimated error for each of the orbits (assuming they are equal) would be $32.7 \div \sqrt{2}$.

į.

TABLE 15 15 DAY RMS OF FIT TO NORMAL POINT OBSERVATIONS ON LAGEOS

EPOCH	GRAVITY MODEL	POLAR MOTION A1–UT1	NO, OBS.	RMS OF FIT (CM)
791215	GEM-9	він*	602	17.3
	GEM-L2	LAGEOS	602	8.0
790901	GEM-9	BIH	203	12.2
	GEM-L2	LAGEOS	203	6.6
800416	GEM-9	BIH	663	33.6
	GEM-L2	LAGEOS	663	<u>16.7</u>
800716	GEM-9	BIH	771	39.5
	GEM-L2	LAGEOS	771	11.3
800830	GEM-9	BIH	1376	36.7
	GEM-L2	LAGEOS	1376	13.8

*BIH Circular D 90-day smooth values was used as a priori.

6.0 SUMMARY

A new gravity model GEM-L2 has been derived as part of the analysis being undertaken on Lageos for the NASA Crustal Dynamics Program. Lageos' unique contribution toward the resolution of the long wavelength (for terms through degree and order 4) geopotential has resulted in a two-fold improvement in our knowledge of these terms. This improvement is confirmed through an analysis of 24-hour synchronous satellite orbits. Over 400,000 Lageos ranges taken by 20 laser tracking stations over a 2 1/2 year period have been utilized in the new field. GEM-L2 contains a consistent set of parameters including a geopotential field (20×20) , tracking station coordinates (GEM 9 and Lageos), 5-day polar motion and Δ LOD values, and GM = $398600.607 \text{ km}^3/\text{sec}^2$ based upon c = 299792.5 m/sec.

GEN-L2 provides for better baseline recovery, orbital modeling, and station positioning from Lageos tracking. The adjustment of earth orientation parameters was essential for improving the geopotential and producing better interstation distances. The accuracy of the station positioning results $(\pm 6 \text{ cm} \text{ in total position globally and } \pm 1.8 \text{ cm} \text{ in}$ baselines) of this report confirms the utility of using SLR for the measurement of tectonic plate motion and inter-plate deformations. These results are summarized in Table 16.

TABLE 16 SUMMARY OF GEM-L2

- GEM-L2 CONSISTS OF:
- (1) A COMBINATION OF 1979, 1980 AND 1981 LAGEOS DATA WITH GEM-9. HARMONICS COMPLETE TO (20x20)
- (2) LASER TRACKING STATION COORDINATES
- (3) 5 DAY POLAR MOTION VALUES AND EARTH ROTATION
- (4) GM = $398600.440 \text{ km}^3/\text{sec}$
- 4x4 PORTION OF THE FIELD NOW HAS ACCURACY ESTIMATED TO BE BETTER THAN 10 CM
- LAGEOS ORBIT ERRORS HAVE IMPROVED FROM 1M WITH GEM-9 TO ABOUT 30 CNI WITH GEM-L2
- ORBITAL RANGE RESIDUALS USING 2 MINUTE NORMAL POINTS ARE NOW ABOUT 10 CM RMS FOR 15 DAY ARCS

(T.)

 GEM-L2 SIGNIFICANTLY IMPROVES BASELINE DETERMINA-TION CAPABILITIES (7 CM FOR GEM-9 TO 1.8 CM FOR GEM-L2 ĸ

REFERENCES

N.12

- Christodoulidis, D. and Smith, D.E., "Prospects for TLRS Baseline Accuracies in the Western USA Using Lageos," NASA TN No. 82133, April 1981.
- Jacchia, L.G., "Revised Static Model of the Thermosphere and Exosphere with Empirical Temperature Profiles," SAO Special Report No. 332, May 5, 1971.
- Kaula, W.M., <u>Theory of Satellite Geodesy</u>, Blaisdell Press, Waltham, Mass., 1966.
- Lerch, F.J., Wagner, C.A., Richardson, J.A., Brownd, J.E., "Goddard Earth Models (5 and 6)," GSFC X-921-74-145, Greenbelt, Maryland, Dec. 1974.
- Lerch, F.J., Klosko, S.M., Laubscher, R.E., Wagner, G.A., "Gravity Model Improvement Using GEOS-3 (GEM-9 and 10)," GSFC Document X-921-77-246, September 1977.
- Lerch, F.J. et al., "Determination of the Geocentric Gravitational Constant From Laser Ranging on Near-Earth Satellites," <u>GRL</u>, Vol. 5, No. 12, pp. 1031-1034, 1978.
- Lerch, F.J., Klosko, S.M., Laubscher, R.E., Wagner, G.A., "Gravity Model Improvement Using GEOS-3 (GEM-9 and 10)," JGR, Vol. 84 (138), pp. 3897-3915, 1979.

- Lerch, F.J., Klosko, S.M., Patel, G.B., "Gravity Model Development Using Lageos," <u>GRL</u>, Vol. 9, No. 11, pp. 1263-1266, November 1982.
- Rosen, R.D. and Salstein, D.A., "Variations in Atmospheric Angular Momentum - 1 January 1976 - 31December 1980," ERT Technical Report A345-T1 prepared for NASA Lageos Project, June 1981.
- Rubincam, D.P., "Atmospheric Drag as the Cause of the Secular Decrease in the Semi-major Axis of Lageos' Orbit," GRL, Vol. 7, No. 6, pp. 468-470, 1980.
- Smith, D.E., Dunn, P.J., "Long Term Evolution of the Lageos Orbit," GRL, Vol. 7, No. 6, pp. 437-440, 1980.
- Wagner, C.A., "The Accuracy of Geopotential Solutions from Resonant Satellite Data," Goddard Space Flight Center Document X-553-72-472, Greenbelt, Maryland, 1972.
- Wagner, C.A. and F.J. Lerch, "The Accuracy of Geopotential Models," <u>Planet. Space Sci.</u>, Vol. 26, pp. 1081-1140, 1978.
- Wagner, C.A., "The Accuracy of the Low Degree Geoid," <u>EOS</u>, 63, No. 18, 303, 1982.