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GEOMETRICAL GEODESY TECHNIQUES
IN GODDARD EARTH MODELS

F. J. Lerch
Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

The method for combining geometrical data with satellite dy-
namical and gravimetry data for the solution of geopotential and
station location parameters is discussed. Geometrical tracking
data (simultaneous events) from the global network of BC-4
stations are currently being processed in a solution that will
greatly enhance the geodetic world system of stations. Previ-
ously the stations in Goddard Earth Models have been derived
only from dynamical tracking data. In this paper a linear re-
gression model is formulated for combining the data, based upon
the statistical technique of weighted least squares. Reduced
normal equations, independent of satellite and instrumental pa-
rameters, are derived for the solution of the geodetic parame-
ters. Exterior standards for the evaluation of the solution and
for the scale of the earth's figure are discussed.
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GEOMETRICAL GEODESY TECHNIQUES
IN GODDARD EARTH MODELS

I. INTRODUCTION

A matrix model employing a reduced form of the general least squares adjust-
ment process is developed. The model provides a method for combining geo-
metrical BC-4 optical data with satellite dynamic and gravimetric data into a
general geodetic solution. The geodetic solution consists of a geocentric system
of station coordinates and spherical harmonic coefficients for the geopotential.
A previous solution, Lerch et al (1972), for a Goddard Earth Model (GEM 4) con-
tained 514 geodetic parameters but did not include any geometric data.

A map of station locations is presented in Figure 1, illustrating the distribution
of 45 BC-4 stations associated with the geometric data and 61 stations associated
with dynamic data from electronic,laser, and optical tracking systems used pre-
viously in GEM 4. Figure 2 illustrates local datum ties between the dynamic and
geometric stations and BC-4 baselines obtained from the geodimeter and tellu-
rometer systems that are to be employed in the new combination solution.

II. BASIC DATA SYSTEMS AND REPRESENTATION

1. Data Systems

Four basic geodetic data systems are employed in the combination solution and
are listed with their associated solution parameters in Table 1. These systems
are the BC-4 geometric (B), gravimetry (G), dynamic satellite (D), and survey (S).

In the survey data system S, the baselines and ties were illustrated in Figure 2.
The ties correspond to relative position coordinates for nearby geometrical and
dynamical stations and are treated as observations with statistical errors based
upon local survey accuracy. Similarly the baseline distances are treated as
statistical observations.

The satellite related parameters associated with the BC-4 system B and the
satellite dynamic system D require preliminary processing for initial estimates
of the parameters. The initial processing will be discussed in a later section.
There are some 20,000 satellite position parameters associated with 1100 BC-4
events of two, three, and four stations observing the satellite simultaneously at
6 to 7 reduced points of satellite position for each event. There are some 350
weekly arcs of satellite dynamic data on 27 satellites, where some 400,000 ob-
servations of electronic, laser, and optical tracking data have been processed.
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o GEM DYNAMIC STATIONS (61)

A BC-4 GEOMETRIC NETWORK (45)

Figure 1. Station Locations
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Table 1
Basic Data Systems and Solution Parameters

Solution Parameters Unknown
Symbol Data System (unknowns) Symbol

(unknowns) Symbol

B BC-4 geometric station location coordinates x
satellite position components
for each geometrical point j qi

G Gravimetry potential coefficients c
(spherical harmonic)

D Dynamic satellite potential coefficients c
station coordinates z
satellite orbital elements
and tracking system parameters
associated with each satellite
arc i Pi

S Survey station coordinates connecting
(Baselines and ties) BC-4 baselines xb in x x

station coordinates connecting
ties x t in x, z t in z x, z

The satellite dynamic parameters consist of six orbital elements and modeled
force parameters at a given epoch on each weekly arc. Tracking system parame-
ters for certain electronic systems have been included in the modeling and are
associated with the initial processing on a weekly are. The gravimetry data
system G consists of a global distribution of 50 equal area blocks of mean gravity
anomalies, Rapp, (1972).

Because of the large number of satellite parameters in the systems B and D, a
least squares matrix model is developed that will reduce the matrix to a form
containing just the geodetic parameters. The reduced form will then be suitable
for computational solution.

2. Representation of Data Systems

A total data system C, which will be used to encompass the four basic data
systems, is represented as

4



C : (0, C, v; y) (1)

where each symbol denotes a column vector as follows:

O - observations

C - computed quantities corresponding to the observations

v - observation residuals (v = 0 - C)

y - the solution parameters or unknowns (see Table 1)

The column vectors are further defined in Section III where the method for the
solution is developed. The four basic data systems, subsystems of C, are simi-
larly represented and defined as in the above form (1), namely

B :(OB,, B, b; x, q) (2)

G : (OG, G, g; c) (3)

S: (OD, Dd; c, z, p) (4)

S : (0
s , S, s; z, x) (5)

where the solution parameters c, z, x, p = [pi], q = [q] are defined in Table 1

for each of the data subsystems. Using the form above, data subsystems of D
and B are represented for each dynamic satellite arc i and geometric satellite

position point j, respectively as follows:

Di : (O Di , di; c, z, pi) (6)

Bj : (OBj, Bj, bj; x, q (7)

5



III. DEVELOPMENT OF THE METHOD

1. General Matrix Model for the Least Squares Solution

A general matrix model of the least squares adjustment process is developed for

the complete data system C given in (1). The model will be subsequently employed
to develop a reduced form of solution for the geodetic data subsystems.

In the data system C the vector symbols, O, C, v, and the unknown solution y

were defined under (1). The vector C = C (y) and the residual vector is

v = 0 - C(y) (8)

which in component form is

[v n ] = [0, - C (y ) ]  for n = 1 to N (9)

where Cn (y) is the computed quantity corresponding to the observation On and is

a function of the parameters in y. The linear condition equation for v in the

least squares adjustment process is given by use of Taylor's expansion as

V = Vo -CyAy , (10)

where v0 = 0 - C (yo), y = y + y, y is a column vector of initial estimates for

each component yk in y for k = 1 to K, and the matrix of partial (derivative) co-
efficients

[3 Cn ()(11)

NXK

in which the partial coefficient element lies in row n and column k and Cn (y) is
given under (9) above. C is evaluated at y = yo.

The least squares minimum condition is

Q = VT W, v = minimum (12)
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where W is a diagonal weight matrix with each element

1

Wn - for n = 1 to N (13)
nn

in which r 2 is the error variance for the observation O . The minimum condi-
n n

tion for (12) is obtained from

Y Q= O for k = 1 to K (14)

which with use of (10) and (12) will give the normal equation

C v = O (15)

or

(C ' Wv C) Ay - CT Wv v = 0. (16)

Solving (16) for Ay will give

Ay = (CyTWV C ) C T W v (17)

and the solution y is

Y = Y + Ay.

Under ideal conditions, where the modeling of Cn (y) for On is complete except

for a random observation error which has normal distribution and variance o 2,
the least squares solution for y may be shown to satisfy the maximum likelihood
principle. See Anderson (1958).



2. Reduced Form of the Normal Equations for the Geodetic Subsystems

Using the column matrices defined for the total data system C under (1) and
those for the geodetic data subsystems in (2) through (5), the following matrix
partitioning is given for C in terms of its data subsystems:

OD D d

0B  B b
O =  C =  v =  - C = (18)

0G  G g

Os S s

Also partition

Fwd C

z Az
Wbwb

W y = x Ay -y Ax (19)

Wq

where the solution parameters p = [pi], q = [qj] , x z, and c are defined in
Table 1, the weight matrix Wv was defined under (13) for C and Wd, Wb, Wg
W, are defined as diagonal weight matrices respectively for the subsystem ob-
servations as ordered in O above. When v and Wv above are substituted into (12),
Q then becomes

Q = dT Wd d + b T Wb b + gT Wg g + sT Ws s (20)

In terms of the variables associated with the data subsystem as given in Table 1,
the linearized residual equations may be expressed by Taylor's series for each
subsystem as

8



d = do - DcAc - DzA z - DpAp

b = b. - B Ax - Bq q

(21)

g = go - G A c

s = s o - Sx Ax- Sz Az

where the subscript (o) corresponds to the initial estimate of the residual vector
which is analogous to v o under (10), and the matrices of partial coefficients are
defined analogous to Cy under (11), for example, in Dz above D would correspond
to C and z to y. Differentiating Q with respect to each of the variables as ordered
in (19) for y and setting the result equal to zero in order to obtain the minimum,
the following normal equations will result with use of (21) for each of the vari-
ables:

DTWd d + GT W g = 0 for c

DZ Wd d + ST W s = 0 for z

BT Wb b + ST Ws = 0 for x (22)

DT Wd d = 0 for p

BT Wb b = 0 for q

Substituting the relations for d, b, g, and s in (21) into (22) will produce the
normal matrix equations in terms of the unknown parameters and the initial
residuals. This result between (21) and (22) is equivalent to the result between
(15) and (16) for the total data system C. If C, is partitioned in terms of the
partial coefficient matrices in (21) then by substituting its transpose, v from (18),
and W, from (19) into (15) the normal equations (22) will result directly.

The last two equations in (22) are used with d and b in (21) to express the satellite
related parameters (Ap, A q) in terms of the geodetic parameters (Ac, A x, A z).

9



When these results for Ap and Aq are substituted into d and b for the first three
equations of (22), the reduced normal equations will then be obtained for the
geodetic parameters. This process just described is carried out below.

Proceeding in this manner then from (22) and d in (21)

DT Wd d = DT Wd (d o - Dc A c - DZ A z - D Ap) = 0. (23)

Solving (23) for A p and substituting the result back into d will give

d = P(d. - DcAc - D Az) (24)

where

P =I - D P (25)

P = (DTWd D)-I D T Wd (26)

Ap = P(d o - D, Ac - Dz Az) (27)

Proceeding similarly as in (23) with

BT Wb b= 0

then

b = Q (bo - Bx Ax) (28)

where Q and Aq may be derived as in (25) through (27).

By use of d in (24), b in (28), and s and g in (21) the system (22) is expressed in
matrix form for the geodetic parameters as follows:

10



Dcc + Gcc Dcz O Ac Dco + Gco

DczT Dzz + Szz Szx A z = Dzo + Szo (29)

0 SzxT Bxx + Sxx Ax LBxo + SxC

where the above symbols are defined as follows:

dynamic satellite system D

Dcc DTWD Dcz = DTWD Dzz = DTWDz

(30)

Dco DT W d Dzo = DT W do  = Wd P

BC-4 geometric system B

Bxx = BT Wb Q Bx Bxo = BT Wb Q bo (31)

gravimetric system G

Gcc = G Wg Gc  Gco = GT W go (32)

survey system S

Szz = SW SSzx SZ STW Sx Sxx S= SW, S,

(33)

Szo = STW s s Sxo = STW. S.

11



In the computations the results for D in (30) and B in (31) are expressed in terms
of reduced results obtained from the observations on each satellite arc i with
satellite parameters pi and on each satellite geometric point j with coordinates
qj. This situation is represented by the data subsystems Di in (6) and Bj in (7).
The data sets and associated partial coefficient matrices of D and B may be par-
titioned in terms of these quantities for their respective subsystems to obtain the
detailed results.

The procedure for these results will be briefly derived. From Di in (6) and D
in (4)

d i = ODi - Di (c, z, pi) for each i = 1 to I, (34)

d = [di ]  D = [Di ] Ap = [Api] p = [ i] (35)

Using Taylor's expansion for d i in (34)

d i = di - Hi A c - Z. Az - pi A Pi (36)

then, from d in (21) and since d = [di],

do = [dio] Dc = [Hi] Dz = [Zi]

(37)

PI o

P2

D
P

o PI

Defining the weight matrix Wdi for ODi and ordering it on the diagonal of Wd for
i = 1 to I and using the above results for (34) through (37), then (23) through (27)
become for each are i

12



P Wdidi = PWdi (dio - Hi Ac - Zi A z - Pi Api) = 0

di = Pi (di - Hi Ac - Zi z)

Pi = I -PiPi (38)

Pi (PT Wdi P)-'P T  i

Api Pi (dio - Hi Ac - Zi A z)

and the results in (30) become

Dcc = (HTWiHi) Dcz (HTWZi) Dzz = (ZTWiZi)

(39)

Dco (H Wdi) zo= (I idio) Wi = dii

where the sum ranges from i = 1 to I.

Treating the system B. in (7) in a like manner to Di above, the result in (31)
would become

J J
Bxx =  (XT Wi X) Bxo = (X

T
WI bio ) ,  (40)

j=1 j=1

where X. corresponds to Z i, W. to W i, and bj to d..
So 10

The solution for the geodetic parameters is obtained through the inverse of the
reduced normal matrix in (29). The inverse matrix also represents the variance-
covariance matrix for the geodetic parameters, as the weighting for the observa-
tions given in (13) is inversely equal to the variance of the observation errors.

13



3. Computational Procedure

In practice the contributions to the reduced normal matrix for each of the geo-

detic subsystems are computed separately and then combined as in (29). The

terms for the reduced normal matrix for each of these four systems are given

separately in equations (30) through (33). The above practice is similarly true

in the computations for the subsystems Di of D and B of B where their respec-

tive matrix terms are identified and combined as in (39) and (40).

The initial starting values for the geodetic parameters are obtained from a pre-

vious geodetic solution, survey data, or through a separate process of data

analysis.

3.1 Satellite Dynamic System

The initial observation residuals and dynamic satellite parameters for the system

Di are obtained from a preliminary reduction of the observation data on a weekly

satellite arc. In this process a bias parameter is modeled for certain electronic

systems for the observation data on each satellite tracking pass. Since a large

number of these parameters may occur within a weekly are span of data, each

bias parameter is eliminated through the back subsitution process at the end of

the associated tracking pass. Numerical integration is employed for the satellite

orbit and the preliminary reduction of the data on the weekly arc is carried out

through the least square process of successive iterations. The normal matrix

for the system Di is formed immediately after the preliminary reduction.

3.2 Geometric Geodesy Technique

In the computations for the BC-4 data system the reduced normal equations (31)

may be obtained through the formulation of condition equations which are inde-

pendent of satellite parameters. This technique is described in the appendix of

the report, and it includes the constraint equations for the station coordinate

ties and baseline distances from datum survey. In addition it provides for use

of simultaneous MOTS and laser data, which has recently been analyzed by

Reece and Marsh (1973) for stations in the area of the United States.

IV. ANALYSIS OF SOLUTION AND GEODETIC RESULTS

The geodetic solution may be tested and analyzed with the use of survey data in

several areas of investigation.

The mean sea level height (MSL) from station survey may be compared with the

height of the station above the geoid as computed from the solution of the poten-

tial coefficients and the geocentric station coordinates including the reference

14



ellipsoid, Lerch et al (1972). In view of the distribution of stations in Figure 1

the dispersion of the differences between survey and computed values about a

mean line may be analyzed. The MSL heights from survey are generally re-

ported to be accurate to about a meter for these stations. Any significant offset

in the mean line from zero differences may be associated with the scale for the

reference ellipsoid, and thus the equatorial radius (ae) of the reference ellipsoid
may be adjusted. Any significant dispersion in the differences (including system-
atic differences) may be analyzed in terms of geographical areas and in terms of

various tracking systems such as the electronic, laser, and optical systems.

The dispersion may be analyzed in terms of the geopotential model particularly

in areas where the gravimetric measurements are not available. These analyses

may be supported with separate tests for geoid heights and station coordinates

as indicated below.

Geoid heights computed from the potential model may be tested and analyzed in

certain major survey areas that contain astrogeodetic deflections of the vertical

and detailed gravimetric data, Vincent et al (1972).

Through adjustment for scale, orientation, and datum shift the station coordinates

between datum survey and the solution may be analyzed. In such an analysis for
a geocentric station solution by Marsh et al (1971), an rms agreement of 3.5 me-

ters on station coordinate differences has been obtained for 20 stations on the

North American Datum.

With a solution derived from the geodetic data systems and use of the above
analysis the following geodetic results may be obtained:

1. A global geoid represented in terms of spherical harmonic coefficients.

2. A world datum of station coordinates including an adjustment for scale,

orientation, and datum shift for local datums.

3. Mean equatorial radius(ae)for the Earth.

4. Mean equatorial value of normal gravity (ge) may be derived from the
gravimetric data, Rapp (1972).
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APPENDIX

Reduced Normal Equations for Geometric Satellite Geodesy
Including Constraints from Datum Survey

The method developed here for the least squares normal equations is based
upon the technique of formulating reduced condition equations where the satellite
parameters have been eliminated. The data considered consists of simultaneous
events from MOTS (Minitrack Optical Tracking System) and laser systems on
GEOS-I and II, the BC-4 worldwide camera network on PAGEOS, and local datum
survey ties and baselines. The reduced condition equations are developed in this

appendix and a case is considered for the treatment of correlated observations.

1. Technique for the Normal Equations

The mathematical analysis leading to the formation of normal equations for
the geometric adjustment of coordinates of tracking stations is based on the fol-
lowing type of events:

1. Two cameras observe the satellite simultaneously
2. Three cameras observe the satellite simultaneously
3. Four cameras observe the satellite simultaneously
4. Two cameras and one laser observe the satellite simultaneously.

Condition equations resulting from a given set of simultaneous observations
are of two types:

* Coplanarity equation, which requires that two observing stations and
their directions to the satellite lie in the same plane.

* Length equation, which requires that the satellite position satisfying the
two-station coplanarity relationship also agrees with the range from a
third station.

Corresponding to each event condition equations of the following form are
used:

m n

Saivi + b bx + c = 0 (1)
J

SRM ING PAGE BLANK NOT FILMC
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where a i , b., and c are known constants derived in the subsequent sections,
c is the discrepancy in the condition equation

vi are the unknown residuals (adjusted minus observed values)

x. are the unknown corrections to stations' Cartesian coordinates

(adjusted minus initial values)

m is the number of observed quantities

n is the number of unknown coordinates.

The number and types of condition equations for events 1 through 4 above

are as follows:

* For a two-camera event, one coplanarity equation is used.

* For a three-camera event, three coplanarity equations are used.

* For a four-camera event, five coplanarity equations are used.

* For a two-camera, single-laser event, one coplanarity equation and one

length equation are used.

The number of condition equations for each event corresponds to the number of

observations less three, since the observation equations are reduced to a form

where the three satellite position coordinates are eliminated. Each observing

camera contributes two observations in an event and an observing laser contrib-

utes one observation. Each of the coplanarity equations for an event involves

distinct pairs of observing stations.

Additional condition (constraint) equations specify coordinate differences

and also take the form of equation (1). Constraints are treated statistically,

similar to observation equations, where values and accuracies are obtained from

a priori information based on datum survey. Two types of constraint equations

are applied:

" Distance equations (baselines), which require the distance between two

stations to remain near a given value

* Coordinate-shift equations, which require the differences between co-

ordinates of two nearby stations to remain near a given value. This

constraint is used to connect the stations in the geometric geodesy with

those in the dynamic satellite geodesy.

For a geometric only solution a third type of statistical constraint may be

applied on individual station coordinates in order to fix the origin of the system.

A priori values for these constraints should be taken from a different source

than datum survey such as from a previously determined geocentric solution in

20



a center of mass reference frame. This constraint is not used in the combina-
tion solution with dynamic satellite geodesy.

For each event (or constraint) 4, denote the associated condition equations
of the form (1) in matrix notation as

AVk + B4X + C = 0, (2)

for which an example of the dimensions and elements of the matrices are given
below. Minimizing Q below w.r.t. the unknown station coordinates in X and
residuals in VA will lead to the formation of the normal matrix equation. The
form Q is

K

Q = (VW4V4 - 2k(A;V + B&X + C)) (3)

where W~ is the diagonal weight matrix for the observations in VA and each
XA is a column vector of Lagrangian multipliers corresponding to the number
of condition equations in event A. The resulting normal matrix equation to be
combined with the gravimetric and dynamic satellite geodesy systems is

K

JX + B MI = N, (4)

where

K

-T = L_ (BM B;),(5)

M (AW'VAT) (6)

The largest dimension of MA is 5 x 5 corresponding to event of type 3 where
there are 5 coplanarity equations of condition. This case has 8 observations and
the dimensions of AR, Vk, B~, and Ck are respectively 5 x 8, 8 x 1, 5 x Nx , and
5 x 1. Nx is the total number of all station coordinates and B (5 x Nx) would
contain for each of the 5 rows only 6 non-zero elements, corresponding to the
b coefficients in (1) for each distinct coplanarity equation involving two observ-
ing stations. Each row of A, has 4 non-zero elements corresponding to the ai
coefficients in (1), associated with the two observing stations in each coplanarity
equation.
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By employing a suitable set of constraints including those that fix the origin,

N may be set equal to zero and a geometric only solution for X can be derived

from (4).

Condition equations for coplanarity, length, and constraints are developed

in sections 2 through 5 and section 6 treats a case for correlated observations.

2. Coordinate System

Camera observations in a and 8 are transformed from right ascension a

and declination 8 to earth-fixed angles 8 and y. The conversion of a and 8,

as corrected for precession, nutation, and polar motion, to the angles 8 and y

is straightforward. The topocentric angle y is measured with respect to the

equatorial plane and is equivalent to 8, i.e., y = 8. The angle f3 is measured

from the Greenwich meridian in a plane parallel to the equator and is

8 = a - GHA (7)

where GHA is the Greenwich Hour Angle at the epoch of the observation.

3. Coplanarity Equation

The coplanarity equation requires that the volume of the parallelepiped

defined by the two station-to-satellite vectors and the station-to-station vector

and their respective errors be zero. The two station-to-satellite vectors are

defined in the local terrestrial coordinates as

+ + (8)

where

ui = cos yi cos /3

vi = cos yi sin /i (i = 1, 2)

Wi = in yi

The station-to-station direction vector p3 is similarly defined in spherical

coordinates by use of

/3 = tan-l Y2 ) o 0 3 <  27 (9)
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y, = ta n-2 1 7 7 (10)

3 t2 X1)2 + (Y2- Y
)2)1/2 2 < 3 2

where x, y, z are the Cartesian coordinates and the range between the station

is

r3 = ((x 2 - X1+ ( 2 - Y 2 + (z 2 - Z1)2)1/2

The volume of the parallelepiped defined by these vectors ( , 32 , 3 ) is given
by their triple scalar product, which is the determinant

cos y1 cos'1 cos y2 cos 2 COS /3 COS 3

F0 = cOS Y sin/81 cos /2 Sin 82 Cos 73 sin /3 (12)

sin y1  sin 7 2  sin 3

and the adjusted volume through linear expansion is

F= F0 +AF= 0

The coefficients of the expansion are then given by

a = cos y/ sin 72 COS 73 cos(/ 3 - 31) - COS /1 cos /2 sin 73 cos( 3
2 - /1) (13)

_ F0
a2 = - CO-= S cos /2 COS 73 sin (/3 - /32 )-siny 1 COS 2 Sin 73 sin(/3 2 - P1 )

+ sin y/ sin /2 cos 3 sin(/33 -,1
)

BFo (15)
a3  - = cos 2 [coS /1 sin 73 Os(/ 2  3) - in 1 3 cos(33 2- (15)

3 22
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a4 - = - Cos 1 cos y2 cos /3 sin(3 - 1) - sin 1, sin Y2 cos Y3 sin( 3 - '8)ay2

- cos y sin 72 sin 3 sin(/32 -/1 )  (16)

aF0
b=a = cos Y [s in y- cos -2 cos(83 - 82) - Cos ^1 sin -/2 COS(0 -,81)) (17)

b y= cosy cosy s cosY sin(P2 1) in 1 cos sin 3 sin(33 - )

+ cosy I siny 2 sin 3 sin(33 -3 1) (18)

Since 8 , ', /2 , and /2 are observations, W , yY, A 2, and Ay 2 are residuals
and are designated v , v2 , v3 , and v4 , respectively. Ap 3 and y/3 are the inter-
station direction adjustments. The variables to be solved for are corrections to
the stations Cartesian coordinates. The transformation of unknowns from inter-
station direction to Cartesian coordinate corrections are given by equation 26.
Then there results an equation of the form of (1).

4. Length Equation

The length equation is developed for two cameras and a laser DME observ-
ing the satellite simultaneously. Assume the existence of two cameras (A and
B), the laser DME (L), and the satellite (S), where directions from the cameras
to the satellite are observed simultaneously (A to S and B to S) and a range is
observed at the same time from L to S. These quantities and auxiliary vectors
and angles are shown in Figure A-1. Assumed values of coordinates of the
cameras and the laser system are used to calculate initial estimates of the
directions and distances between the cameras and the laser. By taking scalar
products of the station-to-station and station-to-satellite vectors the cosines
of the angles, , and ( are obtained as follows:

cos = P72 = sin -1 sin 2 + cos /1 cos /2 cos( 2 -,81) (19)

cos = = sinsin sin /3 + cos y/ cos /3 cos(3 3 - 81) (20)
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(CAMERA)

P3

-o0
A(CAMERA)

L (LASER)

Figure A-i. Geometry for Two-Camera and One Laser
DME Observing Simultaneously
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cos = -P4 = Sin72 Sin- 4 + Cos Y2 cos Y4 os( 4 -, 2 ) (21)

where 8 1, y1, 1 2 , and Y2 are directions to the satellite,

83 ' 7/3 are the inter-station angles for the two cameras, and

P4 ' -4 are the inter-station angles for one camera and the laser
system.

From Figure A-i the law of cosines will give, corresponding to the laser
length s

F = r 2 + b2 - 2br cos S - s 2 = 0, (22)

and the law of sines will give for b above

b = a sin 7
sin

Through the use of (19) through (21) we expand F linearly about the values of
a, r, 83, 73, 'p4, Y4, obtained from the initial station coordinates, and the values of

, , 7,1, 2, and so from the observations. Then we have using differentials
as adjustments (d A)

F aF r F aFF= F + da + dr + d + ... +-ds = 0F a r 33 as

Divide F through by q = 2(b - r cos ) and denote the result by

a l dp,1 + a ,dy 1 + a3d 4d + a 4 sd+a5ds + bd 3 + b 2 dy 3 + bda + b4d 4 + bsdy4

+ b6 dr + C = 0 (23)

where C = FO /q, and the differentials on the a i coefficients are the observation
residuals vi for i = 1 to 5. This represents the laser length equation. The co-
efficients and C are evaluated from the initial values, where F is obtained from
the misclosure of (22) and the coefficients in (23) are as follows:
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a = P1/sin -P~-P5 /sin b = P5/sin77  (24)

a2 = P2/sin C - P6/sin 77 b2 = - P8/sin 77

b3 = sin q-/sin

a3 = -P/sin6-P 9/sin ( b = P9/sin

a4 = P4/sin e - Plo/sin bs =- P12/sin

Sas = - s/(b - r cos 5) b = (r - b cos )/(b - r cos )

and where the P's are given as

P =  b cot [cos 72 sin(32 - /1)]. COS 71

P 2 
=  b cot [cos y sin 32 - sin C1 os /2 cos( 3

2 -,81)]

P3 = -P1

P4 
=  b cot f[sin 1 cos Y2 - Cos Y1 sin 2 COS( /2 -3 1)

]

a cos 7 [cos y/ cos /3 sin(/33 - 1)]

Ps sin

P a COs [Cos y1 sin n3 - sin cos 73 cos(/3 3 -,1
)]

6 sing

P7 P5

P a cos [sin >cos 7Cos -co s inoY cos(3 -)]
8 s in. 3

( br s in [cos /2 cos /4 sin( 4 - -r cos 27
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P (b sin ) [cos 72 sin -4 - sin -2 CoS -4 COS( 4 - P2o ( b- r cos2

Pll = -P911 9

P12 b r os [sin cos 74 - cos 2 sin 4 C (4 - 2)

In order to obtain the desired form (1) for Cartesian station coordinates, the

coplanarity and length equations are transformed from 7, /3, r variables to x,
y, z variables by using the relationships

x 2 - = r Cos T cos /

Y2 - Y1 = r cos / sin/3

z2 - z 1 = r siny (25)

Differentiating these expressions yields

dX- d2dx - r cosy sin/3 - r sin 8 c / cos cos/ d3

2-d - dy = r cos cos - r sinysin/3 cosysin/3 dy (26)

dz 2 - dz L 0 r cos y sin dr

Inverting Equation 26 produces the transformation

d8 -sin/3 cos 3  0 dx 2 - dxt
r cos y r cos y

d/ -sin y cos/3 -sin ysin/3 cosy dY -dy (27)
r r r d 2- 1

dr cosy cos cos y sin siny dz - dz1
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5. Condition Equations for Constraints

The three types of condition equations are: (1) coordinate equations,
(2) distance equations, and (3) coordinate-shift equations. As indicated pre-

viously constraints for station coordinates, distances (baselines), and coordinate

shifts (local datum ties) are based upon a priori information. Such information

is treated statistically as in the case of satellite observations, and hence weights
are applied corresponding to a priori errors.

5.1 Coordinate Equation

Assume the input coordinates of the ith station are coordinates for which

a priori information is available. Let the input values of Xi , Yi, Zi be Xio

Yo , Zio , and denote the adjusted coordinates as

dx i = X1 - Xio xi-2

dyi = Y. - Yio xi-1 (28)

dz. = Zi - Z io

then the constraint equations in the form of equation (1) are simply

V. - X. = 0
i-2 1-2

i-2 - xi- = 0 (29)

v. - x. = 0

5.2 Distance Equations (Baselines)

The condition equation for the baseline distance q between the rth and sth

ground stations is

-dq + cos y cos 8(dxs - dxr) + cos y sin (dys - dyr) + sin y(dzs - dzr) = 0 (30)

where y and 8 are used as in (9) and (10) and the differentials are the unknown

station adjustments. The adjustment

dq = q - q = (q - - -q 0 )

=v - C (31)
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where q is the solution value, q, is the computed value based upon the initial
station coordinates, and q0 is the a priori value for the constraint.

In conformity with the previous notation the terms dxs, dye, dzs, dXr, dyr,
and dz r are replaced by x,_ , x,_, , x, ,xr2  r 1  r, and dq by (31) to obtain

-v + cos y cos(Xs - Xr 2 ) + COS Sin -( x s _ 1 X-1) + s iny(x - Xr)+C= 0 (32)

5.3 Coordinate-Shift Equations

For two nearby stations denote the difference in coordinates as

Dx = x 2 - X1

D = y 2 - y (33)

Dz = z - z1

Since the results are similar for the three equations we will treat just one equa-
tion of condition. For the x component the differential is

- dDx + dx2 - dx, = 0, (34)

and as in the case of the distance equation (31)

dDx =v x - C ,  vx = Dx - Dx ,  C =Dx -Dx0 (35)

where D x is the unknown difference, Dxo is obtained from local survey station
coordinates, and Dxc is computed from the initial input of the station coordinates.
For the ith and jth stations, using the notation of the form (1) where differentials
are replaced by corrections xq and xp, the condition equations for (33) are

S- -2 -"-2 + x

- v+ x.- x. + C = 0 (36)-7 ..- -1 1 y

-v +x . -x i + C = 0
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6. Correlated Observations

The model described above was developed for camera systems that observed

simultaneously the flashing lamps on GEOS-I and II, and then the model was

employed to include the BC-4 camera network that observed the PAGEOS satel-

lite. A BC-4 photograph taken on PAGEOS by an observing station, s, was re-

duced to 7 time points ('R = 1 to 7) of satellite observation angles (P , i). The

reduced observations y and P8 are correlated separately in each type among

the points A = 1 to 7. The modeling for the correlated observations is presented.

Consider 7 events of the type (1), (2), or (3) described in section 1, where

respectively 2, 3, or 4 stations (S =- 2, 3, or 4) observe the satellite simultaneousli
at each of the 7 reduced photographic points A = 1 to 7. Thus for each event

there are 2S simultaneous observations, namely (y , /3) for s = 1 to S. Let p
denote this configuration of S stations and 7 events, then for each p there are

7 sets of matrix condition equations of the form (2). Denote these as

AVP +B X + C = 0 (37)

where by row partitioning for k = 1 to 7

C=[C ] (38)

B =[Bt

and AF lies along the diagonal submatrix path of A (with zero submatrices

for off diagonal blocks)

A = [DIAG AK] (39)

The submatrices V{, B , and A are given as before in (2) for a particular

event, but here the event type for S = 2, 3, or 4 stations is fixed for the 7 events
for a given configuration p.

Denote the variance-covariance matrix of the observation errors as

FP = E(VV T ) (40)

where V, corresponds to the observation errors (noise) in V,.
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The normal equations for the BC-4 observations is obtained by minimizing

Q= Q (41)

P

for the unknowns Vp and X, where

Q = VP V - 2(AV + VpX + CpT  (42)

and

XP- [X]

for which XP is a vector of Lagrangian multipliers defined as in (3) for a given

event. Hence the normal equations will have the form given in (4) through (6).
Thus for each p the normal equations are

J TX BC=C N (43)

where

.T = BpTMpB

p = (APp A T), (44)

and the total set of normal equations for all p are then

N' = NP .

P

It is of interest to compare the matrix Mp derived from 7 events to that of

M,h given in (6) for a single event h. Take the case of S = 4 for which the dimen-

sions A, Vk , and WA were given under (6) respectively as 5 x 8, 8 xl, and
8 x 8, and for which there were 8 observations and 5 coplanarity equations of

condition from the 4 observing stations in a given event. Consider 7 events of

the same type as in the configuration p for S = 4, denote I as M for k = 1

to 7, and assume correlations are absent as in the previous modeling. Then
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MP 0

MP
P = [DIAG ] (45)

0 MP
35

x 35

where

= A (WK) (A)] (46)
5x 5

and since correlations are assumed absent here

P = [DIAG(W )-']

With correlations the same diagonal blocks in (45) arise for M in (44) since

in each event A all observations are uncorrelated, but similar off ciagonal blocks

also exist which is now shown. Using the submatrices VT for V in (38) and

dropping the superscript p on the submatrices, then the variance-covariance

matrix in (40) becomes

Pp= E(VpV T ) = [E(j)] for k'= 1 to 7 and = 1 to 7, (47)

which corresponds to 49 sublocks or submatrices in P . For a given event &

and t the only covariances occur when the station s and the angle y~ or P(

are the same. Denote the observation errors for a given A as (where T true,
o observed)

A(T) - -/(O

(48)

V = vi], i = 1 to 2S,

(T) - 4 (0)
/3s(T) - Ps(O)

2SX 1
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then for a given A and {

E(V ) [E(- 2sx 2s i = 1 to 2S, j = 1 to 2S. (49)

and from the definition of the correlations

E(-j~V4)= = j(, t) = 0 for i j for allkandt

= c2i(, ) for covariances -, (50)

Si(, ) for variances A= t.

Thus, in each sublock of a given 4 and t, the off diagonal elements are zero and

E(VAV) [DIAG ci ( 2SX 2S (51)

and

Pp = ~Dp (, = 1 to7), (52)

Denote

Mp = [M ] ( , 4 = 1 to 7), (53)

and with use of (38), (39), and (52) in (44) then by (53)

M = [A {A{] 2 S-3)x (2 s 3) (54)

Now

M = A D A (55)

"= A W A = M = ,

which is the same as in (46) for the uncorrelated case.

The block form [Mk1] for M , where Mk is given in (54), provides a con-

venient method for the computations of M . However in the present case of cor-
related observations there are 49 such blocks, whereas only the 7 diagonal blocks
Mak are computed for uncorrelated observations as in (45) or (55). The largest
inverse matrix Mp to be inverted occurs for the case of S = 4 and which has
dimension 35 x 35, whereas previously for the case of uncorrelated observations

the largest matrix was 5 x 5. Correlations are generally large among the
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reduced observations of a photograph. Thus the geometric normal equations
should be analyzed further to investigate the overall effect of the correlation on
the final combination solution.

NASA-GSFC
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