1,681 research outputs found
On the theory of electric dc-conductivity : linear and non-linear microscopic evolution and macroscopic behaviour
We consider the Schrodinger time evolution of charged particles subject to a
static substrate potential and to a homogeneous, macroscopic electric field (a
magnetic field may also be present). We investigate the microscopic velocities
and the resulting macroscopic current. We show that the microscopic velocities
are in general non-linear with respect to the electric field. One kind of
non-linearity arises from the highly non-linear adiabatic evolution and (or)
from an admixture of parts of it in so-called intermediate states, and the
other kind from non-quadratic transition rates between adiabatic states. The
resulting macroscopic dc-current may or may not be linear in the field. Three
cases can be distinguished : (a) The microscopic non-linearities can be
neglected. This is assumed to be the case in linear response theory (Kubo
formalism, ...). We give arguments which make it plausible that often such an
assumption is indeed justified, in particular for the current parallel to the
field. (b) The microscopic non-linearitites lead to macroscopic
non-linearities. An example is the onset of dissipation by increasing the
electric field in the breakdown of the quantum Hall effect. (c) The macroscopic
current is linear although the microscopic non-linearities constitute an
essential part of it and cannot be neglected. We show that the Hall current of
a quantized Hall plateau belongs to this case. This illustrates that
macroscopic linearity does not necessarily result from microscopic linearity.
In the second and third cases linear response theory is inadequate. We
elucidate also some other problems related to linear response theory.Comment: 24 pages, 6 figures, some typing errors have been corrected. Remark :
in eq. (1) of the printed article an obvious typing error remain
Approximate Deadline-Scheduling with Precedence Constraints
We consider the classic problem of scheduling a set of n jobs
non-preemptively on a single machine. Each job j has non-negative processing
time, weight, and deadline, and a feasible schedule needs to be consistent with
chain-like precedence constraints. The goal is to compute a feasible schedule
that minimizes the sum of penalties of late jobs. Lenstra and Rinnoy Kan
[Annals of Disc. Math., 1977] in their seminal work introduced this problem and
showed that it is strongly NP-hard, even when all processing times and weights
are 1. We study the approximability of the problem and our main result is an
O(log k)-approximation algorithm for instances with k distinct job deadlines
Gradual sub-lattice reduction and a new complexity for factoring polynomials
We present a lattice algorithm specifically designed for some classical
applications of lattice reduction. The applications are for lattice bases with
a generalized knapsack-type structure, where the target vectors are boundably
short. For such applications, the complexity of the algorithm improves
traditional lattice reduction by replacing some dependence on the bit-length of
the input vectors by some dependence on the bound for the output vectors. If
the bit-length of the target vectors is unrelated to the bit-length of the
input, then our algorithm is only linear in the bit-length of the input
entries, which is an improvement over the quadratic complexity floating-point
LLL algorithms. To illustrate the usefulness of this algorithm we show that a
direct application to factoring univariate polynomials over the integers leads
to the first complexity bound improvement since 1984. A second application is
algebraic number reconstruction, where a new complexity bound is obtained as
well
Parameterizing by the Number of Numbers
The usefulness of parameterized algorithmics has often depended on what
Niedermeier has called, "the art of problem parameterization". In this paper we
introduce and explore a novel but general form of parameterization: the number
of numbers. Several classic numerical problems, such as Subset Sum, Partition,
3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with
Target Sums, have multisets of integers as input. We initiate the study of
parameterizing these problems by the number of distinct integers in the input.
We rely on an FPT result for ILPF to show that all the above-mentioned problems
are fixed-parameter tractable when parameterized in this way. In various
applied settings, problem inputs often consist in part of multisets of integers
or multisets of weighted objects (such as edges in a graph, or jobs to be
scheduled). Such number-of-numbers parameterized problems often reduce to
subproblems about transition systems of various kinds, parameterized by the
size of the system description. We consider several core problems of this kind
relevant to number-of-numbers parameterization. Our main hardness result
considers the problem: given a non-deterministic Mealy machine M (a finite
state automaton outputting a letter on each transition), an input word x, and a
census requirement c for the output word specifying how many times each letter
of the output alphabet should be written, decide whether there exists a
computation of M reading x that outputs a word y that meets the requirement c.
We show that this problem is hard for W[1]. If the question is whether there
exists an input word x such that a computation of M on x outputs a word that
meets c, the problem becomes fixed-parameter tractable
Self-Pulsating Semiconductor Lasers: Theory and Experiment
We report detailed measurements of the pump-current dependency of the
self-pulsating frequency of semiconductor CD lasers. A distinct kink in this
dependence is found and explained using rate-equation model. The kink denotes a
transition between a region where the self-pulsations are weakly sustained
relaxation oscillations and a region where Q-switching takes place. Simulations
show that spontaneous emission noise plays a crucial role for the cross-over.Comment: Revtex, 16 pages, 7 figure
Algorithms for Highly Symmetric Linear and Integer Programs
This paper deals with exploiting symmetry for solving linear and integer
programming problems. Basic properties of linear representations of finite
groups can be used to reduce symmetric linear programming to solving linear
programs of lower dimension. Combining this approach with knowledge of the
geometry of feasible integer solutions yields an algorithm for solving highly
symmetric integer linear programs which only takes time which is linear in the
number of constraints and quadratic in the dimension.Comment: 21 pages, 1 figure; some references and further comments added, title
slightly change
On the String Consensus Problem and the Manhattan Sequence Consensus Problem
In the Manhattan Sequence Consensus problem (MSC problem) we are given
integer sequences, each of length , and we are to find an integer sequence
of length (called a consensus sequence), such that the maximum
Manhattan distance of from each of the input sequences is minimized. For
binary sequences Manhattan distance coincides with Hamming distance, hence in
this case the string consensus problem (also called string center problem or
closest string problem) is a special case of MSC. Our main result is a
practically efficient -time algorithm solving MSC for sequences.
Practicality of our algorithms has been verified experimentally. It improves
upon the quadratic algorithm by Amir et al.\ (SPIRE 2012) for string consensus
problem for binary strings. Similarly as in Amir's algorithm we use a
column-based framework. We replace the implied general integer linear
programming by its easy special cases, due to combinatorial properties of the
MSC for . We also show that for a general parameter any instance
can be reduced in linear time to a kernel of size , so the problem is
fixed-parameter tractable. Nevertheless, for this is still too large
for any naive solution to be feasible in practice.Comment: accepted to SPIRE 201
FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension
We show the existence of a fully polynomial-time approximation scheme (FPTAS)
for the problem of maximizing a non-negative polynomial over mixed-integer sets
in convex polytopes, when the number of variables is fixed. Moreover, using a
weaker notion of approximation, we show the existence of a fully
polynomial-time approximation scheme for the problem of maximizing or
minimizing an arbitrary polynomial over mixed-integer sets in convex polytopes,
when the number of variables is fixed.Comment: 16 pages, 4 figures; to appear in Mathematical Programmin
Mirror-Descent Methods in Mixed-Integer Convex Optimization
In this paper, we address the problem of minimizing a convex function f over
a convex set, with the extra constraint that some variables must be integer.
This problem, even when f is a piecewise linear function, is NP-hard. We study
an algorithmic approach to this problem, postponing its hardness to the
realization of an oracle. If this oracle can be realized in polynomial time,
then the problem can be solved in polynomial time as well. For problems with
two integer variables, we show that the oracle can be implemented efficiently,
that is, in O(ln(B)) approximate minimizations of f over the continuous
variables, where B is a known bound on the absolute value of the integer
variables.Our algorithm can be adapted to find the second best point of a
purely integer convex optimization problem in two dimensions, and more
generally its k-th best point. This observation allows us to formulate a
finite-time algorithm for mixed-integer convex optimization
Precedence-constrained scheduling problems parameterized by partial order width
Negatively answering a question posed by Mnich and Wiese (Math. Program.
154(1-2):533-562), we show that P2|prec,|, the
problem of finding a non-preemptive minimum-makespan schedule for
precedence-constrained jobs of lengths 1 and 2 on two parallel identical
machines, is W[2]-hard parameterized by the width of the partial order giving
the precedence constraints. To this end, we show that Shuffle Product, the
problem of deciding whether a given word can be obtained by interleaving the
letters of other given words, is W[2]-hard parameterized by , thus
additionally answering a question posed by Rizzi and Vialette (CSR 2013).
Finally, refining a geometric algorithm due to Servakh (Diskretn. Anal. Issled.
Oper. 7(1):75-82), we show that the more general Resource-Constrained Project
Scheduling problem is fixed-parameter tractable parameterized by the partial
order width combined with the maximum allowed difference between the earliest
possible and factual starting time of a job.Comment: 14 pages plus appendi
- …
