The usefulness of parameterized algorithmics has often depended on what
Niedermeier has called, "the art of problem parameterization". In this paper we
introduce and explore a novel but general form of parameterization: the number
of numbers. Several classic numerical problems, such as Subset Sum, Partition,
3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with
Target Sums, have multisets of integers as input. We initiate the study of
parameterizing these problems by the number of distinct integers in the input.
We rely on an FPT result for ILPF to show that all the above-mentioned problems
are fixed-parameter tractable when parameterized in this way. In various
applied settings, problem inputs often consist in part of multisets of integers
or multisets of weighted objects (such as edges in a graph, or jobs to be
scheduled). Such number-of-numbers parameterized problems often reduce to
subproblems about transition systems of various kinds, parameterized by the
size of the system description. We consider several core problems of this kind
relevant to number-of-numbers parameterization. Our main hardness result
considers the problem: given a non-deterministic Mealy machine M (a finite
state automaton outputting a letter on each transition), an input word x, and a
census requirement c for the output word specifying how many times each letter
of the output alphabet should be written, decide whether there exists a
computation of M reading x that outputs a word y that meets the requirement c.
We show that this problem is hard for W[1]. If the question is whether there
exists an input word x such that a computation of M on x outputs a word that
meets c, the problem becomes fixed-parameter tractable