In this paper, we address the problem of minimizing a convex function f over
a convex set, with the extra constraint that some variables must be integer.
This problem, even when f is a piecewise linear function, is NP-hard. We study
an algorithmic approach to this problem, postponing its hardness to the
realization of an oracle. If this oracle can be realized in polynomial time,
then the problem can be solved in polynomial time as well. For problems with
two integer variables, we show that the oracle can be implemented efficiently,
that is, in O(ln(B)) approximate minimizations of f over the continuous
variables, where B is a known bound on the absolute value of the integer
variables.Our algorithm can be adapted to find the second best point of a
purely integer convex optimization problem in two dimensions, and more
generally its k-th best point. This observation allows us to formulate a
finite-time algorithm for mixed-integer convex optimization