71 research outputs found

    Beating quantum limits in interferometers with quantum locking of mirrors

    Full text link
    The sensitivity in interferometric measurements such as gravitational-wave detectors is ultimately limited by quantum noise of light. We discuss the use of feedback mechanisms to reduce the quantum effects of radiation pressure. Recent experiments have shown that it is possible to reduce the thermal motion of a mirror by cold damping. The mirror motion is measured with an optomechanical sensor based on a high-finesse cavity, and reduced by a feedback loop. We show that this technique can be extended to lock the mirror at the quantum level. In gravitational-waves interferometers with Fabry-Perot cavities in each arms, it is even possible to use a single feedback mechanism to lock one cavity mirror on the other. This quantum locking greatly improves the sensitivity of the interferometric measurement. It is furthermore insensitive to imperfections such as losses in the interferometer

    Noise reduction in gravitational wave interferometers using feedback

    Full text link
    We show that the quantum locking scheme recently proposed by Courty {\it et al.} [Phys. Rev. Lett. {\bf 90}, 083601 (2003)] for the reduction of back action noise is able to significantly improve the sensitivity of the next generation of gravitational wave interferometers.Comment: 12 pages, 2 figures, in print in the Special Issue of J. Opt. B on Fluctuations and Noise in Photonics and Quantum Optic

    Unusual Loop-Sequence Flexibility of the Proximal RNA Replication Element in EMCV

    Get PDF
    Picornaviruses contain stable RNA structures at the 5′ and 3′ ends of the RNA genome, OriL and OriR involved in viral RNA replication. The OriL RNA element found at the 5′ end of the enterovirus genome folds into a cloverleaf-like configuration. In vivo SELEX experiments revealed that functioning of the poliovirus cloverleaf depends on a specific structure in this RNA element. Little is known about the OriL of cardioviruses. Here, we investigated structural aspects and requirements of the apical loop of proximal stem-loop SL-A of mengovirus, a strain of EMCV. Using NMR spectroscopy, we showed that the mengovirus SL-A apical loop consists of an octaloop. In vivo SELEX experiments demonstrated that a large number of random sequences are tolerated in the apical octaloop that support virus replication. Mutants in which the SL-A loop size and the length of the upper part of the stem were varied showed that both stem-length and stability of the octaloop are important determinants for viral RNA replication and virus reproduction. Together, these data show that stem-loop A plays an important role in virus replication. The high degree of sequence flexibility and the lack of selective pressure on the octaloop argue against a role in sequence specific RNA-protein or RNA-RNA interactions in which octaloop nucleotides are involved

    Short RNA Guides Cleavage by Eukaryotic RNase III

    Get PDF
    In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response

    Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function

    Get PDF
    Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNAPro peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748–A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNAPro against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel

    HEXIM1 targets a repeated GAUC motif in the riboregulator of transcription 7SK and promotes base pair rearrangements

    Get PDF
    7SK snRNA, an abundant RNA discovered in human nucleus, regulates transcription by RNA polymerase II (RNAPII). It sequesters and inhibits the transcription elongation factor P-TEFb which, by phosphorylation of RNAPII, switches transcription from initiation to processive elongation and relieves pauses of transcription. This regulation process depends on the association between 7SK and a HEXIM protein, neither isolated partner being able to inhibit P-TEFb alone. In this work, we used a combined NMR and biochemical approach to determine 7SK and HEXIM1 elements that define their binding properties. Our results demonstrate that a repeated GAUC motif located in the upper part of a hairpin on the 5′-end of 7SK is essential for specific HEXIM1 recognition. Binding of a peptide comprising the HEXIM Arginine Rich Motif (ARM) induces an opening of the GAUC motif and stabilization of an internal loop. A conserved proline-serine sequence in the middle of the ARM is shown to be essential for the binding specificity and the conformational change of the RNA. This work provides evidences for a recognition mechanism involving a first event of induced fit, suggesting that 7SK plasticity is involved in the transcription regulation

    GONADOTROPIN-RELEASE IN OVARIECTOMIZED EWES FED DIFFERENT AMOUNTS OF COUMESTROL

    No full text
    Three experiments were conducted to study changes in pulsatile secretion of LH and FSH during the breeding season or anoestrus in ovariectomized Ile-de-France ewes fed different amounts of the phyto-oestrogen coumestrol. In Exp. 1, conducted during the breeding season, ewes (3-4 per group) were fed lucerne supplying 4, 18 or 30 mg coumestrol per ewe per day for 15 days. Experiments 2 and 3 were conducted during seasonal anoestrus. In Exp. 2, ewes (4 per group) were fed lucerne supplying coumestrol concentrations ranging from 4 to 38 mg/ewe/day for 15 days. In Exp. 3, ewes (10 per group) were fed lucerne supplying 14 or 125 mg coumestrol/ewe/day for 15 days. During the breeding season, an increased concentration of coumestrol in the diet significantly decreased the amplitude of LH pulses. There were no effects on LH pulse frequency or on FSH concentrations. During seasonal anoestrus, there were no significant effects on LH pulse frequency, or amplitude and no significant effect on FSH concentration. These results show that high concentrations of coumestrol in lucerne diets would not explain seasonal variation in LH pulse frequency in ovariectomized ewes. However, lucerne diets with increased coumestrol concentrations can influence LH release during the breeding season

    Active Reconfigurable Luneburg lens at 60GHz

    No full text
    International audienceAn active receiver antenna with beam scanning and beam shaping capability is described. This antenna is based on a plate inhomogeneous Luneburg lens fed by several waveguide sources. Firstly, a plate Luneburg lens is manufactured thru a new technological process allowing to change the refractive index of a single foam layer. The measured radiation patterns of this lens are compared with simulated ones at 60GHz. Secondly, the active antenna is detailed and measured radiation patterns demonstrate the beam reconfigurability of this antenna system
    corecore