238,861 research outputs found

    The evolution-dominated hydrodynamic model and the pseudorapidity distributions in high energy physics

    Full text link
    By taking into account the effects of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions in the context of evolution-dominated hydrodynamic model. The leading particles are supposed to have a Gaussian rapidity distribution normalized to the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaboration at BNL-RHIC in Au-Au and Cu-Cu collisions at sqrt(s_NN) =200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions at sqrt(s_NN) =2.76 TeV.Comment: 17 pages,4 figures, 2 table

    A Note on Pretzelosity TMD Parton Distribution

    Full text link
    We show that the transverse-momentum-dependent parton distribution, called as Pretzelosity function, is zero at any order in perturbation theory of QCD for a single massless quark state. This implies that Pretzelosity function is not factorized with the collinear transversity parton distribution at twist-2, when the struck quark has a large transverse momentum. Pretzelosity function is in fact related to collinear parton distributions defined with twist-4 operators. In reality, Pretzelosity function of a hadron as a bound state of quarks and gluons is not zero. Through an explicit calculation of Pretzelosity function of a quark combined with a gluon nonzero result is found.Comment: improved explanation, published version in Phys. Lett.

    Quark-gluon vertex with an off-shell O(a)-improved chiral fermion action

    Full text link
    We perform a study the quark-gluon vertex function with a quenched Wilson gauge action and a variety of fermion actions. These include the domain wall fermion action (with exponentially accurate chiral symmetry) and the Wilson clover action both with the non-perturbatively improved clover coefficient as well as with a number of different values for this coefficient. We find that the domain wall vertex function behaves very well in the large momentum transfer region. The off-shell vertex function for the on-shell improved clover class of actions does not behave as well as the domain wall case and, surprisingly, shows only a weak dependence on the clover coefficient cSWc_{SW} for all components of its Dirac decomposition and across all momenta. Including off-shell improvement rotations for the clover fields can make this action yield results consistent with those from the domain wall approach, as well as helping to determine the off-shell improved coefficient cqâ€Čc_q^\prime.Comment: 11 pages, 13 figures, REVTeX

    Dissipate locally, couple globally: a sharp transition from decoupling to infinite range coupling in Josephson arrays with on-site dissipation

    Full text link
    We study the T=0 normal to superconducting transition of Josephson arrays with {\it on-site} dissipation. A perturbative renormalization group solution is given. Like the previously studied case of {\it bond} dissipation (BD), this is a "floating" to coupled (FC) phase transition. {\it Unlike} the BD transition, at which {\it only} nearest-neighbor couplings become relevant, here {\it all} inter-grain couplings, out to {\it infinitely} large distances, do so simultaneously. We predict, for the first time in an FC transition, a diverging spatial correlation length. Our results show the robustness of floating phases in dissipative quantum systems.Comment: 7+ pages, 3 eps figures, Europhysics Letters preprint format, as publishe

    Fluorescence studies of the binding of amphiphilic amines with phospholipids.

    Get PDF
    The binding characteristics of several amine drugs with dispersed phospholipids (phosphatidylcholine, phosphatidylserine, and phosphatidylglycerol) have been studied using the fluorometric method and 1-anilino-8-naphthalene sulfonate and 1,6 diphenyl-1,3,5-hexatriene as fluorescence probes. The results show that amphiphilic amines, such as chlorphentermine, interact with phospholipids via both ionic and hydrophobic forces. The ionic interaction, which occurs between the protonated amine group of the drug and the phosphate oxygen of the lipid, changes the amphiphilic characteristics of the lipid by reducing the number of negative charges on the lipid vesicles, and inhibits the Ca2+-dependent lipid hydrolysis by blocking the Ca2+ binding sites on the lipid vesicles. The hydrophobic interaction, which involves the nonpolar moieties of the drug and the lipid, is of primary importance to the overall drug-lipid binding stability. Drugs without a strong hydrophobic moiety, such as dopamine, do not interact with phospholipids

    Renormalization and resummation in finite temperature field theories

    Get PDF
    Resummation, ie. reorganization of perturbative series, can result in an inconsistent perturbation theory, unless the counterterms are reorganized in an appropriate way. In this paper two methods are presented for resummation of counterterms: one is a direct method where the necessary counterterms are constructed order by order; the other is a general one, based on renormalization group arguments. We demonstrate at one hand that, in mass independent schemes, mass resummation can be performed by gap equations renormalized prior to the substitution of the resummed mass for its argument. On the other hand it is shown that any (momentum-independent) form of mass and coupling constant resummation is compatible with renormalization, and one can explicitly construct the corresponding counterterms.Comment: 10 pages, 4 figures, revtex

    The Case for Combining a Large Low-Band Very High Frequency Transmitter With Multiple Receiving Arrays for Geospace Research: A Geospace Radar

    Get PDF
    We argue that combining a high‐power, large‐aperture radar transmitter with several large‐aperture receiving arrays to make a geospace radar—a radar capable of probing near‐Earth space from the upper troposphere through to the solar corona—would transform geospace research. We review the emergence of incoherent scatter radar in the 1960s as an agent that unified early, pioneering research in geospace in a common theoretical, experimental, and instrumental framework, and we suggest that a geospace radar would have a similar effect on future developments in space weather research. We then discuss recent developments in radio‐array technology that could be exploited in the development of a geospace radar with new or substantially improved capabilities compared to the radars in use presently. A number of applications for a geospace radar with the new and improved capabilities are reviewed including studies of meteor echoes, mesospheric and stratospheric turbulence, ionospheric flows, plasmaspheric and ionospheric irregularities, and reflection from the solar corona and coronal mass ejections. We conclude with a summary of technical requirements

    Offline Signature Verification by Combining Graph Edit Distance and Triplet Networks

    Full text link
    Biometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties

    Flow effects on multifragmentation in the canonical model

    Get PDF
    A prescription to incorporate the effects of nuclear flow on the process of multifragmentation of hot nuclei is proposed in an analytically solvable canonical model. Flow is simulated by the action of an effective negative external pressure. It favors sharpening the signatures of liquid-gas phase transition in finite nuclei with increased multiplicity and a lowered phase transition temperature.Comment: 13 pages, 5 Post Script figures (accepted for publication in PRC
    • 

    corecore