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Abstract

A prescription to incorporate the effects of nuclear flow on the process of

multifragmentation of hot nuclei is proposed in an analytically solvable

canonical model. Flow is simulated by the action of an effective negative

external pressure. It favors sharpening the signatures of liquid-gas phase

transition in finite nuclei with increased multiplicity and a lowered phase

transition temperature.
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In intermediate energy heavy ion reactions, particularly for the central and near-

central collisions, the colliding nuclei get compressed in the initial phase with subse-

quent decompression thereby generating collective flow energy. At energies around

100 MeV per nucleon or above, large radial collective flow has been observed in

many experiments [1–4]. Theoretically it has been surmised that collective expan-

sion has a strong influence on the fragment multiplicity. In a hydrodynamical model

with site-bond percolation, it has been shown that compression is very effective [5] in

multifragmentation. Such a conclusion is further reached in microscopic BUU-type

formulations [6] as well as in a grand canonical thermodynamic calculation [7]. Its

crucial importance on the extracted value of the freeze-out density from yield ratios of

fragment isotopes differing by one neutron [8,9] in a statistical fragmentation model

was also pointed out [10].

Speculations have been made connecting multifragmentation to a liquid-gas type

phase transition in finite nuclear systems (detailed references may be found in [11–13]).

Experimental determination of the caloric curves in nuclear multifragmentation stud-

ies suggest strongly the occurrence of such a transition. The determination of tem-

perature, however, is still shrouded in uncertainty and the order of the transition is

a subject of controversy. Theoretical models of different genres have been proposed;

these include percolation [14], lattice-gas [15,16], statistical canonical [11] and micro-

canonical models [12] and semi-microscopic models like finite temperature Thomas-

Fermi theory in both nonrelativistic [17] and relativistic [18] framework. Many of

these models are based on the phase space considerations though they differ in de-

tails. A canonical model based on this consideration which is analytic in nature has

been proposed in Ref. [19] and some applications [20,21] of this model have been

made in the context of nuclear mutifragmentation. This model is comparatively eas-

ily tractable, but still powerful enough to reproduce many of the features of nuclear

multifragmentation including liquid-gas phase transition that can be correlated to
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some of the experimental data. This model, however, does not include the effects of

nuclear flow observed in intermediate energy heavy ion collisions. In this communi-

cation we incorporate nuclear flow in the model and study its effect on some inclusive

multifragmentation observables.

The flow effects are simulated through an external negative pressure [7]. In the

stationary freeze-out volume calculation as no nucleonic matter exists beyond the

freeze-out boundary, the external pressure is assumed to be zero. A positive uniform

external pressure, i.e. an inwardly directed pressure, gives rise to compression of the

system. Similarly, a negative external pressure gives rise to an inflationary scenario

(as in the case of early universe [22], for example). The expanding nuclear system can

then be simulated as under the action of an effective negative external pressure. We

define the flow pressure to be equal and opposite to this negative external pressure.

It should be pointed out that the validity of the model depends on the assumption

that the thermodynamic equilibration time is small compared to the time scale for

the expansion of the system. This is expected to be fulfilled [7] when vflow/〈v〉 is

much small compared to unity; here 〈v〉 is the average nucleonic velocity. This limits

the applicability of the model to flow energy upto ∼5 MeV per nucleon.

We consider an excited nuclear system at a temperature T and under an external

pressure P (negative in our case, the flow pressure Pfl = −P ). The system consists

of N neutrons and Z protons, the total number of nucleons being A(= N + Z). The

partition function QA,Z of the system [23] is given by

QA,Z = exp (−G/T )

=
∑

r

exp [(Er + PVr) /T ] . (1)

Here G = E−TS+PV is the Gibbs potential, Er the state dependent energy and Vr

the state dependent volume. If ωij represents the partition function for the fragment

(ij) consisting of i nucleons and j protons, the partition function of the system (A,Z)
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fragmenting into all possible configurations {n}, assuming the fragment pieces are

non-interacting, is given by

QA,Z =
∑

{n}

A
∏

i=1

Z
∏

j=0

(ωij)
nij

nij !
. (2)

Here nij is the number of (ij) species present. The sum runs over all possible con-

figurations conserving nucleon number and charge. The average multiplicity of (ij)

species is

〈nij〉 =
ωij

QA,Z
QA−i,Z−j. (3)

The function QA,Z can be easily calculated using the recursion relation [19]

QA,Z =
1

A

A
∑

i=1

Z
∑

j=0

iωijQA−i,Z−j. (4)

The partition function is built up defining Q00 = 1. The partition function ωij is

ωij =
∑

k

∫

d3pd3r

h3
exp

[

−

(

Ek
ij +

PijV

nij

)

/T

]

, (5)

where Pij (
∑

ij Pij = P ) is the partial pressure due to the (ij) species and

Ek
ij =

p2

2mi
+ ǫkij + V C

ij . (6)

Here the first term on the right hand side denotes the center of mass kinetic energy

and ǫkij refers to the energy of the k-th internal state of the fragment; V C
ij is the

single-particle Coulomb energy which we evaluate in the complementary fragment

approximation [24]. Equation (5) reduces to

ωij =
(2πmT )3/2

h3
i3/2qij

∫

dV exp (−PijV/nijT ) , (7)

where

qij =
∑

k

exp
[

−
(

ǫkij + V C
ij

)

/T
]

. (8)
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We do not have any a priori notion about the dependence of Pij and nij on volume

as well as on temperature. We, therefore, make a simplifying assumption that the

dependence of PijV/nij = Pij/ρij (ρij being the density of the (ij) species) on tem-

perature is linear. It will be seen later that this is tantamount to assuming the flow

energy of a fragment proportional to temperature. Such a prescription may not be

unjustified as both stronger compression (hence collective flow) and larger tempera-

ture of the fragmenting system result from enhanced bombarding energy. We then

write Pij/ρij = CijT , Cij being a constant for the fragment species.

For fragment masses upto i = 16, the input for ǫkij is taken from the experimental

data; for fragment masses above 16, the liquid-drop expression

qij = exp
[(

W0i− σ(T )i2/3 + aiT
2 − V C

ij

)

/T
]

, (9)

is taken using Fermi-gas approximation. Here the volume energy term W0=16 MeV ,

the temperature dependent surface tension is σ(T ) = σ0[(T
2

c − T 2)/(T 2

c + T 2)]5/4

with σ0 = 18 MeV and the critical temperature Tc = 18 MeV . The level density

parameter is taken as ai = i/16 MeV −1.

The total energy of the system is evaluated as

E =
1

QA,Z

∑

r

Erexp [− (Er + PVr) /T ]

=
∑

ij

〈nij〉

[

3

2
T +

{

i
(

−W0 + T 2/16
)

+ σ(T )i2/3 − T
dσ

dT
i2/3 + V C

ij

}]

−P 〈V 〉. (10)

In deriving Eq.(10), use has been made of the same approximation as in Eq.(7). The

first term in the square bracket is the kinetic energy of the fragments for the center

of mass motion and the term within the curly bracket is the internal energy of the

fragments lifted by the Coulomb energy. The last term is identified as the flow energy

(note here that P is negative). In absence of a better prescription, we have replaced

the average volume 〈V 〉 by a freeze-out volume Vf . It is then seen that the flow energy
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eijfl of a fragment belonging to the (ij) species is Pij/ρij . We then have eijfl = CijT .

We consider the flow to be radial. As the heavier fragments are formed relatively

closer to the center, the flow energy per particle decreases with the mass number of

the fragment. So we parametrize eijfl as δi
αT with α < 1. The parameter δ determines

the flow energy of a nucleon at a temperature T . The total flow energy is

Etot
fl = δT

∑

ij

〈nij〉i
α. (11)

The decrease of flow energy per particle with increasing mass of the fragment is taken

care of through the parameter α. It can be checked that for α = 1, the fragmentation

pattern remains unaltered. With these prescriptions, the integral pertaining to Eq.(7)

is Vfexp(δi
α). The effect of flow is thus tantamount to an increase in the effective

freeze-out volume which is dependent on the fragment species. The larger the species,

the larger the effective freeze-out volume. Such an effect was already observed in a

previous analysis of experimental data with radial flow [10].

In order to study the flow effects on nuclear multifragmentation, results are shown

for 197Au taken as a representative system alongwith those for 109Ag to explore the

mass dependence of the observables calculated. An ab initio determination of the

parameters α and δ is beyond the scope of a statistical model. We vary the param-

eters α and δ to study their sensitivity on the observables. In Fig.1, the average

per nucleon multiplicity 〈M〉/A (top panels) and the average number of intermediate

mass fragments per nucleon 〈NIMF 〉/A (bottom panels) are displayed as a function

of temperature. The IMF ’s are defined as fragments with 3 ≤ Z ≤ 20. In panel (a)

the fragment multiplicities that are displayed are calculated at a constant freeze-out

volume Vf = 6V0 where V0 is the normal volume of the fragmenting system. All the

subsequent calculations at constant volume are done at the aforementioned Vf . The

meanings of the different lines corresponding to variation of α and δ are displayed in

the legend. Unless specifically mentioned in the legend, the lines correspond to 197Au
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as the fragmenting system. The comparison of the dotted line with the full line shows

the influence of flow on the fragment multiplicity. It is evident that flow enhances

the multiplicity. We note that the multiplicity 〈M〉/A has a sudden enhancement

at a particular temperature. It will be seen later that such enhancement also occurs

in the heat capacity and entropy at around this temperature which we identify as

a liquid-gas type phase transition in a finite nucleus. This transition temperature

decreases with increasing flow. At a constant volume, we note that generally multi-

plicity increases with decreasing α. The multiplicity and the transition temperature

are weakly dependent on the parameter α. Their dependence on the mass of the frag-

menting system is also not very significant as is evident from the results displayed for

109Ag (dashed line) in the figure. The fragment multiplicity at constant flow pressure

Pfl = 0.025MeV fm−3 is displayed in the panel (b). The values of the parameter

sets corresponding to different lines are given in the legend. For all the results pre-

sented in Figs.1-3, the legends of panels (a) and (b) apply for calculations performed

at constant volume and at constant flow pressure, respectively. From the comparison

of the solid line and the dotted line it is found that the multiplicity increases signif-

icantly with the increase in the flow energy. As in the case of constant volume, the

multiplicity is seen to be not sensitive to the parameter α and the mass of the frag-

menting system. The jump at the transition temperature is somewhat more marked

here as compared to that for constant volume calculations. The total flow energy is

quite insensitive to the parameter α and is mostly governed by the parameter δ. For

δ = 0.5, at the transition temperature the flow energy is ∼ 1.6 MeV per nucleon

which increases to ∼ 2.3 MeV per nucleon for δ=0.8. In the lower panels of the fig-

ure, the average number of intermediate mass fragments per nucleon 〈NIMF 〉/A are

displayed as a function of temperature both at constant volume and at constant flow

pressure as indicated. Below the transition temperature the number of NIMF ’s are

very small; at the transition temperature there is a sudden enhancement in the IMF
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multiplicity. The dependence of 〈NIMF 〉/A on the parameters α and δ as well as on

the mass of the fragmenting system are similar as found for the fragment multiplicity

〈M〉/A. Experimentally the multiplicities are measured as a function of excitation

energy. The calculated results alongwith the measured 〈NIMF 〉/A as a function of

E∗/A both at constant volume and at constant pressure are displayed in Fig.2. The

average multiplicity per nucleon 〈M〉/A is seen to increase smoothly with E∗/A; the

〈NIMF 〉/A is found to rise and fall smoothly as a function of excitation energy. It

is found that the calculated results at constant pressure conforms better with the

experimental data. In the experimental situation, the mass of the fragmenting sys-

tem decreases appreciably with the excitation energy. However, from the calculated

results for Ag and Au, we find that the IMF multiplicities nicely scale with the mass

of the fragmenting system. This justifies the comparison of 〈NIMF 〉/A calculated for

a single system for all the excitation energies with the experimental data.

The caloric curves, i.e. the dependence of the excitation energy on temperature

both at constant volume (top panel) and at constant pressure (bottom panel) are

presented in Fig.3. The dashed line corresponds to 109Ag, the other ones refer to

197Au with different choices of parameters as explained in connection with Fig.1. The

caloric curve at constant volume shows a monotonic increase of temperature with

excitation energy; however, a clear plateau is observed at around T=6.7 MeV for

calculation without flow and at ∼ 5.8 MeV for all values of α chosen with δ= 0.5. A

few representative experimental data (given by filled circles [4] and open triangles [25])

are shown in the figure. There is a wide variation in mass of the excited fragmenting

system in these data. Mass variation is an important factor that has been often

emphasized [26] in any interpretation of the caloric curve; however, in the mass range

100-200, there is not much quantitative change in the experimental data [27]. This

is also reflected in our calculations. It is seen that with a modest flow energy of ∼ 2

MeV per nucleon around the transition temperature, the qualitative features of the
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data can be fairly reproduced. The caloric curve at constant flow pressure, on the

other hand, exhibits instead of a plateau a mild undulation in a very narrow region of

temperature near the phase transition. The excitation energy is triple valued at a fixed

temperature in this region. This corresponds to three different freeze-out volumes.

(For figures 1 and 5, the relevant quantities are taken at the highest volume where G

is found to be the minimum.) In a canonical model without flow, such a behavior has

also been observed at constant thermal pressure by Das et al [28]. Inspection of the

caloric curves both at constant volume and at constant pressure shows that they are

nearly insensitive to the values of α and the mass of the fragmenting systems chosen.

However, increase in flow energy (increase in δ) reduces the transition temperature.

The heat capacity at constant volume Cv as a function of excitation energy is

shown in the top panel of Fig.4 for the system 197Au with α =0.8 and values of

δ as marked in the figure. The peaked structure in Cv signals a liquid-gas phase

transition, the peak becoming stronger with increasing flow. Results corresponding

to the choice of other parameters are not shown as they yield very similar results.

The heat capacity at constant flow pressure (bottom panel) with δ =0.5 and α =0.8

shows a negative branch in the excitation energy zone corresponding to the narrow

temperature range where the caloric curve displays a negative slope in the undulating

region. The dashed vertical lines correspond to the maximum and minimum in the

caloric curve where Cp is discontinuous. Similar behavior has also been observed in

the lattice-gas model by Chomaz et al [16]. The qualitative nature of Cp with choice

of other flow parameters remains unchanged and are not shown.

The entropy per particle S/A as a function of temperature at constant volume and

at constant flow pressure Pfl are dispalyed in the top and in the bottom panel of Fig.5,

respectively for the values of the flow parameters as given in the figure. At the transi-

tion temperature, there is a jump in the entropy which becomes more pronounced for

calculations at constant Pfl. The larger entropy at any particular temperature with
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flow can be understood either from the enhanced fragment multiplicity with flow or

from the increased effective freeze-out volume.

In summary, we have performed calculations for multifragmentation of a heated

nucleus in a canonical model with incorporation of flow both at constant volume as

well as at constant flow pressure. It may be pointed out that under the experimental

conditions none of these constraints may exist. In the absence of any definite knowl-

edge of the actual scenario, the calculations are done with these constraints imposed.

It is found that the average multiplicity increases with flow; the average IMF mul-

tiplicity shows a rise and fall with excitations commensurate with the experimental

data. The calculated caloric curves also follow the experimental trend very closely.

The plateau in the caloric curve and the peaked structure of the corresponding heat

capacity at around 5-6 MeV signal a liquid-gas phase transition in the finite nuclear

systems. At constant flow pressure, the caloric curve shows a negative slope in a

small domain of temperature and gives rise to negative heat capacity. Negative heat

capacity at constant thermal pressure has been observed in the same model without

flow [28]; it is interpreted as arising in regions of mechanical instability where the

isobaric volume expansion coefficient is negative. The same effect is seen to persist

with incorporation of flow. A sudden jump in entropy is also seen, both at constant

volume and at constant pressure. It is interesting to note that the maximum in the

〈NIMF 〉, the peak in Cv, the discontinuity in Cp and the sudden jump in entropy are

all around the same temperature signalling a liquid-gas phase transition.
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Figure Captions

Fig. 1 In the top panel the average multiplicities per nucleon 〈M〉/A as a function of

temperature at constant volume (a) and at constant flow pressure Pfl=0.025

MeV fm−3 (b) are shown. All lines correspond to 197Au except the dashed line

that refers to 109Ag. The different lines refer to different sets of flow parameters

as given in the legend. In the bottom panel the average IMF multiplicity per

nucleon 〈NIMF 〉/A is displayed both at constant volume (c) and at constant

flow pressure (d). The notations for the panels (c) and (d) are the same as

those in the panels (a) and (b), respectively.

Fig. 2 The average multiplicity per nucleon 〈M〉/A (top panel) and the average IMF

multiplicity per nucleon 〈NIMF 〉/A (bottom panel) are shown as a function of

excitation energy. The notations are the same as in Fig. 1. Some representative

experimental data for IMF multiplicity are also displayed.

Fig. 3 The caloric curves at constant freeze-out volume Vf = 6V0 (top panel) and at

constant flow pressure Pfl = 0.025 MeV fm−3 (bottom panel). The notations

are the same as in Fig.1. The experimental data refer to [4] (filled circles) and

[25] (open triangles).

Fig. 4 The heat capacity per nucleon at constant volume 6V0 (top panel) and at con-

stant flow pressure 0.025 MeV fm−3 (bottom panel) are displayed for 197Au

with α=0.8 and δ as indicated. The meaning of the vertical dashed lines is

explained in the text.

Fig. 5 The entropy per nucleon S/A at constant volume 6V0 (top panel) and at constant

flow pressure 0.025 MeV fm−3 (bottom panel) with α and δ as indicated for

the system 197Au.
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