186 research outputs found

    Patent Foramen Ovale in Cerebral Infarction

    Get PDF
    Recent studies support the hypothesis of a close aetiological and pathogenic association between the presence of patent foramen ovale (PFO) and cryptogenic stroke. The therapeutic options currently used in the treatment of these patients range from standard antiaggregation and standard-dose anticoagulation to the percutaneous occlusion of the PFO. The use or recommendation of treatment is based both on clinical risk factors associated with PFO, such as age, detection of states of hypercoagulability and previous history of stroke, and on the risks associated to right-to-left shunt (RLSh) and PFO, such as the size of PFO, magnitude of RLSh and the presence of atrial septal aneurysm (ASA). However, there is currently no consensus regarding the most suitable treatment and it is surprising to observe the widespread use of certain therapeutic approaches which are not supported by clinical evidence

    Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept

    Full text link
    We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactorsand the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40\,cm long gas cell placed in the beam path of the Aries 40\,m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS,CS, SO2 (<1E-03 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments.Comment: Accepted for publication in Astronomy and Astrophysics in September 21, 2017. 16 pages, 18 figure

    Monitoring workload and performance response to taekwondo training

    Get PDF
    This study compared the association between Foster’s and Banister’s TRIMP methods for quantifying internal training load and training stimuli responses. Methods: A group of twenty-two Taekwondo competitors were divided by gender and level of expertise. The athletes practiced three different types of exercises to develop the following skills: a) speed, b) power, and c) aerobic power. Results: A significant correlation was obtained between the Foster’s and Banister’s TRIMP methods for developing aerobic capacity (r = 0.60, p = 0.004) and power (r = 0.52, p = 0.014). No significant correlation was suggested between training methods and speed training (r = 0.20, p = 0.377). Conclusion: Lactate and heart rate responses to different types of exercises suggested the need for aerobic and anaerobic-based training sessions. The use of rating of perceived exertion scale-based measurements to monitor workload is recommended for Taekwondo competitors

    Raman Fingerprint of Pressure-Induced Phase Transitions in TiS3Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions

    Full text link
    Two-dimensional layered trichalcogenide materials have recently attracted the attention of the scientific community because of their robust mechanical and thermal properties and applications in opto- and nanoelectronics devices. We report the pressure dependence of out-of-plane Ag Raman modes in high quality few-layer titanium trisulfide (TiS3) nanoribbons grown using a direct solid-gas reaction method and infer their cross-plane thermal expansion coefficient. Both mechanical stability and thermal properties of the TiS3 nanoribbons are elucidated by using phonon-spectrum analyses. Raman spectroscopic studies at high pressure (up to 34 GPa) using a diamond anvil cell identify four prominent Ag Raman bands; a band at 557 cm-1 softens under compression, and others at 175, 300, and 370 cm-1 show normal hardening. Anomalies in phonon mode frequencies and excessive broadening in line width of the soft phonon about 13 GPa are attributed to the possible onset of a reversible structural transition. A complete structural phase transition at 43 GPa is inferred from the Ag soft mode frequency (557 cm-1) versus pressure extrapolation curve, consistent with recently reported theoretical predictions. Using the experimental mode Grüneisen parameters γi of Raman modes, we estimated the cross-plane thermal expansion coefficient Cv of the TiS3 nanoribbons at ambient phase to be 1.321 × 10-6 K-1. The observed results are expected to be useful in calibration and performance of next-generation nanoelectronics and optical devices under extreme stress condition

    Magnetobiochronology of lower Pliocene marine sediments from the lower Guadalquivir Basin: insights into the tectonic evolution of the Strait of Gibraltar area

    Get PDF
    The Gibraltar Arc is a complex tectonic region, and several competing models have been proposed to explain its evolution. We studied the sedimentary fill of the Guadalquivir Basin to identify tectonic processes that were occurring when the reopening of the Strait of Gibraltar led to the reestablishment of Mediterranean outflow. We present a chronostratigraphic framework for the Lower Pliocene sediments from the lower Guadalquivir Basin (SW Spain). The updated chronology is based on magnetobiostratigraphic data from several boreholes. Our results show that the studied interval in the La Matilla core is in the early Pliocene section, providing better constraints on the sedimentary evolution of the basin during that period. Migrating depositional facies led to a younger onset of sandy deposition basinward. At the northwestern passive margin, a 0.7 m.y. period of sedimentary bypass related to a sharp decrease in sedimentation rates and lower sea levels resulted from the tectonic uplift of the forebulge. In contrast, high sedimentation rates with continuous deep-marine sedimentation are recorded at the basin center due to continuous tectonic subsidence and west-southwestward progradation of axial depositional systems. The marginal forebulge uplift, continuous tectonic basinal subsidence, and southward progradation of clinoforms in the early Pliocene can be explained by the pull of a lithospheric slab beneath the Gibraltar Arc as the Strait of Gibraltar opened. These findings are, to our knowledge, the first reported sedimentary expression of slab pull beneath the Betics related to the opening of the Strait of Gibraltar after the Messinian salinity crisis

    The biological age linked to oxidative stress modifies breast cancer aggressiveness

    Get PDF
    The incidence of breast cancer increases with age until menopause, and breast cancer is more aggressive in younger women. The existence of epidemiological links between breast cancer and aging indicates that both processes share some common mechanisms of development. Oxidative stress is associated with both cancer susceptibility and aging. Here we observed that ERBB2-positive breast cancer, which developed in genetically heterogeneous ERBB2-positive transgenic mice generated by a backcross, is more aggressive in chronologically younger than in older mice (differentiated by the median survival of the cohort that was 79 weeks), similar to what occurs in humans. In this cohort, we estimated the oxidative biological age using a mathematical model that integrated several subphenotypes directly or indirectly related to oxidative stress. The model selected the serum levels of HDL-cholesterol and magnesium and total AKT1 and glutathione concentrations in the liver. The grade of aging was calculated as the difference between the predicted biological age and the chronological age. This comparison permitted the identification of biologically younger and older mice compared with their chronological age. Interestingly, biologically older mice developed more aggressive breast cancer than the biologically younger mice. Genomic regions on chromosomes 2 and 15 linked to the grade of oxidative aging were identified. The levels of expression of Zbp1 located on chromosome 2, a gene related to necroptosis and inflammation, positively correlated with the grade of aging and tumour aggressiveness. Moreover, the pattern of gene expression of genes linked to the inflammation and the response to infection pathways was enriched in the livers of biologically old mice. This study shows part of the complex interactions between breast cancer and aging.JPL was partially supported by FEDER and the MICINN (SAF2014-56989-R and SAF2017-88854R), the Instituto de Salud Carlos III (PIE14/00066), >Proyectos Integrados IBSAL 2015> (IBY15/00003), the Sandra Ibarra Foundation >de Solidaridad Frente al Cáncer> Foundation and >We can be heroes> Foundation. JHM was supported by the National Institutes of Health, a National Cancer Institute grant (R01 CA116481), and the Low-Dose Scientific Focus Area, Office of Biological & Environmental Research, US Department of Energy (DE-AC02-05CH11231).Peer Reviewe

    Broad-band high-resolution rotational spectroscopy for laboratory astrophysics

    Get PDF
    We present a new experimental set-up devoted to the study of gas phase molecules and processes using broad-band high spectral resolution rotational spectroscopy. A reactor chamber is equipped with radio receivers similar to those used by radio astronomers to search for molecular emission in space. The whole range of the Q (31.5-50 GHz) and W bands (72-116.5 GHz) is available for rotational spectroscopy observations. The receivers are equipped with 16 × 2.5 GHz fast Fourier transform spectrometers with a spectral resolution of 38.14 kHz allowing the simultaneous observation of the complete Q band and one-third of the W band. The whole W band can be observed in three settings in which the Q band is always observed. Species such as CH3CN, OCS, and SO2 are detected, together with many of their isotopologues and vibrationally excited states, in very short observing times. The system permits automatic overnight observations, and integration times as long as 2.4 × 105 s have been reached. The chamber is equipped with a radiofrequency source to produce cold plasmas, and with four ultraviolet lamps to study photochemical processes. Plasmas of CH4, N2, CH3CN, NH3, O2, and H2, among other species, have been generated and the molecular products easily identified by the rotational spectrum, and via mass spectrometry and optical spectroscopy. Finally, the rotational spectrum of the lowest energy conformer of CH3CH2NHCHO (N-ethylformamide), a molecule previously characterized in microwave rotational spectroscopy, has been measured up to 116.5 GHz, allowing the accurate determination of its rotational and distortion constants and its search in space.We thank the European Research Council for funding support under Synergy Grant ERC-2013-SyG, G.A. 610256 (NANOCOSMOS). IT, VJH, and JLD acknowledge additional partial support from the Spanish State Research Agency (AEI) through grant FIS2016-77726-C3-1-P. JAMG, LM, and GS acknowledge additional partial support from the Spanish State Research Agency (AEI) through grant MAT2017-85089-C2-1R. We thank David López Romero for his help during the process of installation, commissioning, and cleaning of the chamber. We would like to thank Kremena Makasheva for the useful comments and suggestions during the experiments with Hexamethyldisiloxane. We would also like to thank Rosa Lebrón, Jesús Quintanilla, and Cristina Soria for providing us with the sample of N-ethylformamide. Sandra I. Ramírez acknowledges support from the FONCICYT under grant number 291842. Celina Bermúdez thanks the Spanish Ministerio de Ciencia Innovación y Universidades for the Juan de la Cierva grant FJCI-2016-27983

    Comparative effects of overproducing the AraC-type transcriptional regulators MarA, SoxS, RarA and RamA on antimicrobial drug susceptibility in Klebsiella pneumoniae

    Get PDF
    OBJECTIVES: In Klebsiella pneumoniae, overproduction of RamA and RarA leads to increased MICs of various antibiotics; MarA and SoxS are predicted to perform a similar function. We have compared the relative effects of overproducing these four AraC-type regulators on envelope permeability (a combination of outer membrane permeability and efflux), efflux pump and porin production, and antibiotic susceptibility in K. pneumoniae. METHODS: Regulators were overproduced using a pBAD expression vector. Antibiotic susceptibility was measured using disc testing. Envelope permeability was estimated using a fluorescent dye accumulation assay. Porin and efflux pump production was quantified using proteomics and validated using real-time quantitative RT–PCR. RESULTS: Envelope permeability and antibiotic disc inhibition zone diameters both reduced during overproduction of RamA and to a lesser extent RarA or SoxS, but did not change following overproduction of MarA. These effects were associated with overproduction of the efflux pumps AcrAB (for RamA and SoxS) and OqxAB (for RamA and RarA) and the outer membrane protein TolC (for all regulators). Effects on porin production were strain specific. CONCLUSIONS: RamA is the most potent regulator of antibiotic permeability in K. pneumoniae, followed by RarA then SoxS, with MarA having very little effect. This observed relative potency correlates well with the frequency at which these regulators are reportedly overproduced in clinical isolates
    corecore