185 research outputs found

    Comparison of 16S rRNA gene sequences of genus Methanobrevibacter

    Get PDF
    BACKGROUND: The phylogeny of the genus Methanobrevibacter was established almost 25 years ago on the basis of the similarities of the 16S rRNA oligonucleotide catalogs. Since then, many 16S rRNA gene sequences of newly isolated strains or clones representing the genus Methanobrevibacter have been deposited. We tried to reorganize the 16S rRNA gene sequences of this genus and revise the taxonomic affiliation of the isolates and clones representing the genus Methanobrevibacter. RESULTS: The phylogenetic analysis of the genus based on 786 bp aligned region from fifty-four representative sequences of the 120 available sequences for the genus revealed seven multi-member groups namely, Ruminantium, Smithii, Woesei, Curvatus, Arboriphilicus, Filiformis, and the Termite gut symbionts along with three separate lineages represented by Mbr. wolinii, Mbr. acididurans, and termite gut flagellate symbiont LHD12. The cophenetic correlation coefficient, a test for the ultrametric properties of the 16S rRNA gene sequences used for the tree was found to be 0.913 indicating the high degree of goodness of fit of the tree topology. A significant relationship was found between the 16S rRNA sequence similarity (S) and the extent of DNA hybridization (D) for the genus with the correlation coefficient (r) for logD and logS, and for [ln(-lnD) and ln(-lnS)] being 0.73 and 0.796 respectively. Our analysis revealed that for this genus, when S = 0.984, D would be <70% at least 99% of the times, and with 70% D as the species "cutoff", any 16S rRNA gene sequence showing <98% sequence similarity can be considered as a separate species. In addition, we deduced group specific signature positions that have remained conserved in evolution of the genus. CONCLUSIONS: A very significant relationship between D and S was found to exist for the genus Methanobrevibacter, implying that it is possible to predict D from S with a known precision for the genus. We propose to include the termite gut flagellate symbiont LHD12, the methanogenic endosymbionts of the ciliate Nyctotherus ovalis, and rat feces isolate RT reported earlier, as separate species of the genus Methanobrevibacter

    RF Controlled Robotic Vehicle with Metal Detection Project

    Full text link
    The project is intended to cultivate a robotic vehicle that can sense metals ahead of it on its path similar to detecting land mines. The robot is controlled by a remote using RF technology. It consists of a metal detector circuit interfaced to the control unit that alarms the user behind it about a doubted land mine ahead. An 8051 series of microcontroller is used for the preferred operation. For controlling the movement of robot either to forward, backward & right or left commands are sent to the receiver by using push buttons of the transmitter. At the receiving end two motors are interfaced to the microcontroller where they are used for the movement of the vehicle. The RF transmitter acts as a RF remote control that has the advantage of sufficient range (up to 200 meters) with proper antenna, while the receiver decodes before serving it to another microcontroller to drive DC motors via motor driver IC for necessary work. A metal detector circuit is attached on the robot body and its operation is carried out automatically on sensing any metal underneath. The instant the robot senses this metal it produces an alarm sound through buzzer. This is to aware the operator of a probable metal (eg: land mine) ahead on its path. Further the project can be enhanced by mounting a wireless camera on the robot so that the operator can govern the movement of the robot remotely by observing it on a screen

    Vaccine Wastage Assessment After Introduction of Open Vial Policy in Surat Municipal Corporation Area of India

    Get PDF
    Background: As per the vaccine management policy of the Government of India all vaccine vials opened for an immunization session were discarded at the end of that session, irrespective of the type of vaccine or the number of doses remaining in the vial prior to 2013. Subsequently, open vial policy (OVP) was introduced in 2013 and should reduce both vaccine wastage as well as governmental healthcare costs for immunization. This study evaluates the vaccine wastage after introduction of the OVP and its comparison with the previous study of vaccine wastage in Surat city before implementation of OVP. It needs to mention that the vaccine policy for this period under comparison was uniform except for the OVP. Methods: Information regarding vaccine doses consumed and children vaccinated during immunization sessions of 24 urban health centers (UHCs) of Surat city were retrieved for the period of January 1st, 2014 to March 31st, 2014. The data were analyzed to estimate vaccine wastage rate (WR) and vaccine wastage factor (WF). In order to assess the impact of OVP, vaccine WR of this study was compared with that of previous study conducted in Surat city during January 1st, 2012 to March 31st, 2012. Results: The vaccine WR for oral polio vaccine (OPV) has decreased from 25% to 13.62%, while the WRs for DPT, hepatitis B virus (HBV) and the pentavalent vaccine combinedly have decreased from 17.94% to 8.05%. Thus, by implementation of OVP, an estimated 747 727 doses of OPV and 343 725 doses of diphtheria, pertussis and tetanus toxoid vaccine (DPT), HBV and the pentavalent vaccines combinedly have been saved in Surat city of India in a year. Conclusion: The implementation of the OVP in Surat city has led to a significant lowering in the vaccine wastage, leading to savings due to lower vaccine requirement

    Evidence of extreme domain wall speeds under ultrafast optical excitation

    Full text link
    Time-resolved ultrafast EUV magnetic scattering was used to test a recent prediction of >10 km/s domain wall speeds by optically exciting a magnetic sample with a nanoscale labyrinthine domain pattern. Ultrafast distortion of the diffraction pattern was observed at markedly different timescales compared to the magnetization quenching. The diffraction pattern distortion shows a threshold-dependence with laser fluence, not seen for magnetization quenching, consistent with a picture of domain wall motion with pinning sites. Supported by simulations, we show that a speed of \approx 66 km/s for highly curved domain walls can explain the experimental data. While our data agree with the prediction of extreme, non-equilibrium wall speeds locally, it differs from the details of the theory, suggesting that additional mechanisms are required to fully understand these effects.Comment: 5 pages, 4 figures; Supplemental Material: 8 pages, 9 figure

    Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects

    Get PDF
    A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study

    Effect of Cry1Ab Protein on Rhizobacterial Communities of Bt-Maize over a Four-Year Cultivation Period

    Get PDF
    Background: Bt-maize is a transgenic variety of maize expressing the Cry toxin from Bacillus turingiensis. The potential accumulation of the relative effect of the transgenic modification and the cry toxin on the rhizobacterial communities of Btmaize has been monitored over a period of four years. Methodology/Principal Findings: The accumulative effects of the cultivation of this transgenic plant have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The obtained sequences were subjected to taxonomic, phylogenetic and taxonomicindependent diversity studies. The results obtained were consistent, indicating that variations detected in the rhizobacterial community structure were possibly due to climatic factors rather than to the presence of the Bt-gene. No variations were observed in the diversity estimates between non-Bt and Bt-maize. Conclusions/Significance: The cultivation of Bt-maize during the four-year period did not change the maize rhizobacterial communities when compared to those of the non-Bt maize. This is the first study to be conducted with Bt-maize during such a long cultivation period and the first evaluation of rhizobacterial communities to be performed in this transgenic plant using Next Generation Sequencing

    Soil pH mediates the balance between stochastic and deterministic assembly of bacteria

    Get PDF
    Little is known about the factors affecting the relative influences of stochastic and deterministic processes that govern the assembly of microbial communities in successional soils. Here, we conducted a meta-analysis of bacterial communities using six different successional soil datasets distributed across different regions. Different relationships between pH and successional age across these datasets allowed us to separate the influences of successional age (i.e., time) from soil pH. We found that extreme acidic or alkaline pH conditions lead to assembly of phylogenetically more clustered bacterial communities through deterministic processes, whereas pH conditions close to neutral lead to phylogenetically less clustered bacterial communities with more stochasticity. We suggest that the influence of pH, rather than successional age, is the main driving force in producing trends in phylogenetic assembly of bacteria, and that pH also influences the relative balance of stochastic and deterministic processes along successional soils. Given that pH had a much stronger association with community assembly than did successional age, we evaluated whether the inferred influence of pH was maintained when studying globally distributed samples collected without regard for successional age. This dataset confirmed the strong influence of pH, suggesting that the influence of soil pH on community assembly processes occurs globally. Extreme pH conditions likely exert more stringent limits on survival and fitness, imposing strong selective pressures through ecological and evolutionary time. Taken together, these findings suggest that the degree to which stochastic vs. deterministic processes shape soil bacterial community assembly is a consequence of soil pH rather than successional age

    Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL

    Get PDF
    The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range
    corecore