7 research outputs found

    Arginine-rich peptides are blockers of VR-1 channels with analgesic activity

    Get PDF
    Vanilloid receptors (VRs) play a fundamental role in the transduction of peripheral tissue injury and/or inflammation responses. Molecules that antagonize VR channel activity may act as selective and potent analgesics. We report that synthetic arginine-rich hexapeptides block heterologously expressed VR-1 channels with submicromolar efficacy in a weak voltage-dependent manner, consistent with a binding site located near/at the entryway of the aqueous pore. Dynorphins, natural arginine-rich peptides, also blocked VR-1 activity with micromolar affinity. Notably, synthetic and natural arginine-rich peptides attenuated the ocular irritation produced by topical capsaicin application onto the eyes of experimental animals. Taken together, our results imply that arginine-rich peptides are VR-1 channel blockers with analgesic activity. These findings may expand the development of novel analgesics by targeting receptor sites distinct from the capsaicin binding site.This work was supported by grants from La FundaciĂłn La Caixa (98/027-00 to A.F.M.), the Spanish Interministerial Commission of Science and Technology (CICYT) and the European Commission (FEDER) (1FD97-0662-C02-01 and 02, to A.F.M. and E.P.P.), and the CICYT (SAF99-0066-C02-01 and 02, to C.B. and J.G.).Peer reviewe

    Alarin is a vasoactive peptide

    No full text
    Galanin-like peptide (GALP) is a hypothalamic neuropeptide belonging to the galanin family of peptides. The GALP gene is characterized by extensive differential splicing in a variety of murine tissues. One splice variant excludes exon 3 and results in a frame shift leading to a novel peptide sequence and a stop codon after 49 aa. In this peptide, which we termed alarin, the signal sequence of the GALP precursor peptide and the first 5 aa of the mature GALP are followed by 20 aa without homology to any other murine protein. Alarin mRNA was detected in murine brain, thymus, and skin. In accordance with its vascular localization, the peptide exhibited potent and dose-dependent vasoconstrictor and anti-edema activity in the cutaneous microvasculature, as was also observed with other members of the galanin peptide family. However, in contrast to galanin peptides in general, the physiological effects of alarin do not appear to be mediated via the known galanin receptors. Alarin adds another facet to the surprisingly high-functional redundancy of the galanin family of peptides

    Die myatrophische Lateralsklerose

    No full text
    corecore