186 research outputs found
The United States' contribution of plastic waste to land and ocean
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., & Leonard, G. H. The United States' contribution of plastic waste to land and ocean. Science Advances, 6(44), (2020): eabd0288, doi:10.1126/sciadv.abd0288.Plastic waste affects environmental quality and ecosystem health. In 2010, an estimated 5 to 13 million metric tons (Mt) of plastic waste entered the ocean from both developing countries with insufficient solid waste infrastructure and high-income countries with very high waste generation. We demonstrate that, in 2016, the United States generated the largest amount of plastic waste of any country in the world (42.0 Mt). Between 0.14 and 0.41 Mt of this waste was illegally dumped in the United States, and 0.15 to 0.99 Mt was inadequately managed in countries that imported materials collected in the United States for recycling. Accounting for these contributions, the amount of plastic waste generated in the United States estimated to enter the coastal environment in 2016 was up to five times larger than that estimated for 2010, rendering the United Statesâ contribution among the highest in the world.This work was funded by Ocean Conservancy through support from the Arthur Vining Davis Foundations
Embed systemic equity throughout industrial ecology applications: How to address machine learning unfairness and bias
\ua9 2024 The Authors. Journal of Industrial Ecology published by Wiley Periodicals LLC on behalf of International Society for Industrial Ecology. Recent calls have been made for equity tools and frameworks to be integrated throughout the research and design life cycle âfrom conception to implementationâwith an emphasis on reducing inequity in artificial intelligence (AI) and machine learning (ML) applications. Simply stating that equity should be integrated throughout, however, leaves much to be desired as industrial ecology (IE) researchers, practitioners, and decision-makers attempt to employ equitable practices. In this forum piece, we use a critical review approach to explain how socioecological inequities emerge in ML applications across their life cycle stages by leveraging the food system. We exemplify the use of a comprehensive questionnaire to delineate unfair ML bias across data bias, algorithmic bias, and selection and deployment bias categories. Finally, we provide consolidated guidance and tailored strategies to help address AI/ML unfair bias and inequity in IE applications. Specifically, the guidance and tools help to address sensitivity, reliability, and uncertainty challenges. There is also discussion on how bias and inequity in AI/ML affect other IE research and design domains, besides the food systemâsuch as living labs and circularity. We conclude with an explanation of the future directions IE should take to address unfair bias and inequity in AI/ML. Last, we call for systemic equity to be embedded throughout IE applications to fundamentally understand domain-specific socioecological inequities, identify potential unfairness in ML, and select mitigation strategies in a manner that translates across different research domains
The fundamental links between climate change and marine plastic pollution
Plastic pollution and climate change have commonly been treated as two separate issues and sometimes are even seen as competing. Here we present an alternative view that these two issues are fundamentally linked. Primarily, we explore how plastic contributes to greenhouse gas (GHG) emissions from the beginning to the end of its life cycle. Secondly, we show that more extreme weather and floods associated with climate change, will exacerbate the spread of plastic in the natural environment. Finally, both issues occur throughout the marine environment, and we show that ecosystems and species can be particularly vulnerable to both, such as coral reefs that face disease spread through plastic pollution and climate-driven increased global bleaching events. A Web of Science search showed climate change and plastic pollution studies in the ocean are often siloed, with only 0.4% of the articles examining both stressors simultaneously. We also identified a lack of regional and industry-specific life cycle analysis data for comparisons in relative GHG contributions by materials and products. Overall, we suggest that rather than debate over the relative importance of climate change or marine plastic pollution, a more productive course would be to determine the linking factors between the two and identify solutions to combat both crises
Message in a bottle: open source technology to track the movement of plastic pollution
This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: Data used in this study are available in the Movebank open data repository at https://www.movebank.org/cms/webapp?gwt_fragment=page=studies,path=study1271155477 (Movebank ID No. 1271155477).Rivers worldwide are now acting as major transport pathways for plastic pollution and discharge large quantities of waste into the ocean. Previous oceanographic modelling and current drifter data have been used to predict the movement and accumulation of plastic pollution in the marine environment, but our understanding of the transport and fate through riparian systems is still largely unknown. Here we undertook a proof of concept study by applying open source tracking technology (both GPS (Global Positing System) cellular networks and satellite technology), which have been successfully used in many animal movement studies, to track the movements of individual plastic litter items (500 ml PET (polyethylene terephthalate) drinks bottles) through the Ganges River system (known as the Ganga in India and the Padma and Meghna in Bangladesh, hereafter known as the Ganges) and the Bay of Bengal. Deployed tags were successfully tracked through the Ganges river system and into the Bay of Bengal marine system. The âbottle tagsâ were designed and built (e.g. shape, size, buoyancy) to replicate true movement patterns of a plastic bottle. The maximum distance tracked to date is 2845 km over a period of 94 days. We discuss lessons learnt from the development of these plastic litter tags, and outline how the potential widespread use of this open source technology has the ability to significantly increase understanding of the location of accumulation areas and the timing of large inputs of plastic pollution into the aquatic system. Furthermore, âbottle tagsâ may act as a powerful tool for stimulating social behaviour change, informing science-based policy, and as valuable educational outreach tools for public awareness.National Geographic Societ
Analysis of Microplastics in Food Samples
This chapter presents a compilation of the analytical techniques used to detect and analyze microplastics in food. A detailed description of microplastics found in different samples is provided as well as an estimate of the annual intake of these particles. A total of 22â37 milligrams of microplastics per year was found. The factors that can influence the presence of particles in food, especially table salt, are discussed, showing that a background presence of microplastics in the environment can explain a large amount of experimental data.Support for this work was provided by the CTQ2016-76608-R project from the Ministry of Economy, Industry and Competitiveness (Spain) and by the University of Alicante under the project UAUSTI18-06
Are litter, plastic and microplastic quantities increasing in the ocean?
Whilst both plastic production and inputs at sea have increased since the 1950s, several modelling studies predict a
further increase in the coming years in these respective quantities. We compiled scientific literature on trends in
marine litter, consisting largely of plastic and microplastics in the ocean, understanding that monitoring programs
or assessments for these aspects are varied, frequently focusing on limited components of the marine environment
in different locations, and covering a wide spectrum of marine litter types, with limited standardization. Here we
discuss how trends in the amounts of litter in the marine environment can be compared with the information
provided by models. Increasing amounts of plastic are found in some regions, especially in remote areas, but many
repeated surveys and monitoring efforts have failed to demonstrate any consistent real temporal trend. An
observed steady state situation of plastic quantities in many marine compartments and the fate and transport of
plastic in the marine environment remain areas for much needed further research.info:eu-repo/semantics/publishedVersio
Plastic microfibre ingestion by deep-sea organisms
Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics
Microplastics in personal care products: Exploring perceptions of environmentalists, beauticians and students
Microplastics enter the environment as a result of larger plastic items breaking down (âsecondaryâ) and from particles originally manufactured at that size (âprimaryâ). Personal care productsare an important contributor of secondary microplastics (typically referred to as âmicrobeadsâ), for example in toothpaste, facial scrubs and soaps. Consumers play an important role in influencing the demand for these products and therefore any associated environmental consequences. Hence we need to understand public perceptions in order to help reduce emissions of microplastics. This study explored awareness of plastic microbeads in personal care products in three groups: environmental activists, trainee beauticians and university students in South West England. Focus groups were run, where participants were shown the quantity of microbeads found in individual high-street personal care products. Qualitative analysis showed that while the environmentalists were originally aware of the issue, it lacked visibility and immediacy for the beauticians and students. Yet when shown the amount of plastic in a range of familiar everyday personal care products, all participants expressed considerable surprise and concern at the quantities and potential impact. Regardless of any perceived level of harm in the environment, the consensus was that their use was unnatural and unnecessary. This research could inform future communications with the public and industry as well as policy initiatives to phase out the use of microbeads
- âŠ