512 research outputs found

    Teaching evidence-based management with a focus on producing local evidence

    Get PDF
    We present an approach to teaching evidence-based management (EBMgt) that trains future managers how to produce local evidence. Local evidence is causally interpretable data, collected on-site in companies to address a specific business problem. Our teaching method is a variant of problem-based learning, a method originally developed to teach evidence-based medicine. Following this method, students learn an evidence-based problem-solving cycle for addressing actual business cases. Executing this cycle, students use and produce scientific evidence through literature searches and the design of local, experimental tests of causal hypotheses. We argue the value of teaching EBMgt with a focus on producing local evidence, how it can be taught, and what can be taught. We conclude by outlining our contribution to the literature on teaching EBMgt and by discussing limitations of our approach

    A dynamical model reveals gene co-localizations in nucleus

    Get PDF
    Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency-or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes

    Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study

    Get PDF
    Stochastic expression of genes produces heterogeneity in clonal populations of bacteria under identical conditions. We analyze and compare the behavior of the inducible lac genetic switch using well-stirred and spatially resolved simulations for Escherichia coli cells modeled under fast and slow-growth conditions. Our new kinetic model describing the switching of the lac operon from one phenotype to the other incorporates parameters obtained from recently published in vivo single-molecule fluorescence experiments along with in vitro rate constants. For the well-stirred system, investigation of the intrinsic noise in the circuit as a function of the inducer concentration and in the presence/absence of the feedback mechanism reveals that the noise peaks near the switching threshold. Applying maximum likelihood estimation, we show that the analytic two-state model of gene expression can be used to extract stochastic rates from the simulation data. The simulations also provide mRNA–protein probability landscapes, which demonstrate that switching is the result of crossing both mRNA and protein thresholds. Using cryoelectron tomography of an E. coli cell and data from proteomics studies, we construct spatial in vivo models of cells and quantify the noise contributions and effects on repressor rebinding due to cell structure and crowding in the cytoplasm. Compared to systems without spatial heterogeneity, the model for the fast-growth cells predicts a slight decrease in the overall noise and an increase in the repressors rebinding rate due to anomalous subdiffusion. The tomograms for E. coli grown under slow-growth conditions identify the positions of the ribosomes and the condensed nucleoid. The smaller slow-growth cells have increased mRNA localization and a larger internal inducer concentration, leading to a significant decrease in the lifetime of the repressor–operator complex and an increase in the frequency of transcriptional bursts

    BRAF V600E Mutations Are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications

    Get PDF
    Pleomorphic xanthoastrocytoma (PXA) is low-grade glial neoplasm principally affecting children and young adults. Approximately 40% of PXA are reported to recur within 10 years of primary resection. Upon recurrence, patients receive radiation therapy and conventional chemotherapeutics designed for high-grade gliomas. Genetic changes that can be targeted by selective therapeutics have not been extensively evaluated in PXA and ancillary diagnostic tests to help discriminate PXA from other pleomorphic and often more aggressive astrocytic malignancies are limited. In this study, we apply the SNaPshot multiplexed targeted sequencing platform in the analysis of brain tumors to interrogate 60 genetic loci that are frequently mutated in 15 cancer genes. In our analysis we detect BRAF V600E mutations in 12 of 20 (60%) WHO grade II PXA, in 1 of 6 (17%) PXA with anaplasia and in 1 glioblastoma arising in a PXA. Phospho-ERK was detected in all tumors independent of the BRAF mutation status. BRAF duplication was not detected in any of the PXA cases. BRAF V600E mutations were identified in only 2 of 71 (2.8%) glioblastoma (GBM) analyzed, including 1 of 9 (11.1%) giant cell GBM (gcGBM). The finding that BRAF V600E mutations are common in the majority of PXA has important therapeutic implications and may help in differentiating less aggressive PXAs from lethal gcGBMs and GBMs

    BRAF V600E Mutations Are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications

    Get PDF
    Pleomorphic xanthoastrocytoma (PXA) is low-grade glial neoplasm principally affecting children and young adults. Approximately 40% of PXA are reported to recur within 10 years of primary resection. Upon recurrence, patients receive radiation therapy and conventional chemotherapeutics designed for high-grade gliomas. Genetic changes that can be targeted by selective therapeutics have not been extensively evaluated in PXA and ancillary diagnostic tests to help discriminate PXA from other pleomorphic and often more aggressive astrocytic malignancies are limited. In this study, we apply the SNaPshot multiplexed targeted sequencing platform in the analysis of brain tumors to interrogate 60 genetic loci that are frequently mutated in 15 cancer genes. In our analysis we detect BRAF V600E mutations in 12 of 20 (60%) WHO grade II PXA, in 1 of 6 (17%) PXA with anaplasia and in 1 glioblastoma arising in a PXA. Phospho-ERK was detected in all tumors independent of the BRAF mutation status. BRAF duplication was not detected in any of the PXA cases. BRAF V600E mutations were identified in only 2 of 71 (2.8%) glioblastoma (GBM) analyzed, including 1 of 9 (11.1%) giant cell GBM (gcGBM). The finding that BRAF V600E mutations are common in the majority of PXA has important therapeutic implications and may help in differentiating less aggressive PXAs from lethal gcGBMs and GBMs

    Differential diagnosis of suspected multiple sclerosis: a consensus approach

    Get PDF
    BACKGROUND AND OBJECTIVES: Diagnosis of multiple sclerosis (MS) requires exclusion of diseases that could better explain the clinical and paraclinical findings. A systematic process for exclusion of alternative diagnoses has not been defined. An International Panel of MS experts developed consensus perspectives on MS differential diagnosis. METHODS: Using available literature and consensus, we developed guidelines for MS differential diagnosis, focusing on exclusion of potential MS mimics, diagnosis of common initial isolated clinical syndromes, and differentiating between MS and non-MS idiopathic inflammatory demyelinating diseases. RESULTS: We present recommendations for 1) clinical and paraclinical red flags suggesting alternative diagnoses to MS; 2) more precise definition of "clinically isolated syndromes" (CIS), often the first presentations of MS or its alternatives; 3) algorithms for diagnosis of three common CISs related to MS in the optic nerves, brainstem, and spinal cord; and 4) a classification scheme and diagnosis criteria for idiopathic inflammatory demyelinating disorders of the central nervous system. CONCLUSIONS: Differential diagnosis leading to MS or alternatives is complex and a strong evidence base is lacking. Consensus-determined guidelines provide a practical path for diagnosis and will be useful for the non-MS specialist neurologist. Recommendations are made for future research to validate and support these guidelines. Guidance on the differential diagnosis process when MS is under consideration will enhance diagnostic accuracy and precision

    A polycystic variant of a primary intracranial leptomeningeal astrocytoma: case report and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary leptomeningeal astrocytomas are rare intracranial tumors. These tumors are believed to originate from cellular nests which migrate by means of aberration, ultimately settling in the leptomeningeal structure. They may occur in both solitary and diffuse forms. The literature reports only fifteen cases of solitary primary intracranial leptomeningeal astrocytomas.</p> <p>Case presentation</p> <p>The authors report the case of a seventy-eight year-old woman with a polycystic variant of a solitary primary intracranial leptomeningeal astrocytoma. The first neurological signs were seizures and aphasia. CT and MRI scans demonstrated a fronto-parietal polycystic tumor adherent to the sub arachnoid space. A left fronto-temporo-parietal craniotomy revealed a tight coalescence between the tumor and the arachnoid layer which appeared to wrap the mass entirely. Removal of the deeper solid part of the tumor resulted difficult due to the presence of both a high vascularity and a tight adherence between the tumor and the ventricular wall.</p> <p>Conclusion</p> <p>A new case of a solitary primitive intracranial leptomeningeal astrocytoma of a rare polycystic variant is reported. Clinical, surgical, pathologic and therapeutic aspects of this tumor are discussed.</p

    Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis

    Get PDF
    Atypical imaging features of multiple sclerosis lesions include size >2 cm, mass effect, oedema and/or ring enhancement. This constellation is often referred to as ‘tumefactive multiple sclerosis’. Previous series emphasize their unifocal and clinically isolated nature, however, evolution of these lesions is not well defined. Biopsy may be required for diagnosis. We describe clinical and radiographic features in 168 patients with biopsy confirmed CNS inflammatory demyelinating disease (IDD). Lesions were analysed on pre- and post-biopsy magnetic resonance imaging (MRI) for location, size, mass effect/oedema, enhancement, multifocality and fulfilment of Barkhof criteria. Clinical data were correlated to MRI. Female to male ratio was 1.2 : 1, median age at onset, 37 years, duration between symptom onset and biopsy, 7.1 weeks and total disease duration, 3.9 years. Clinical course prior to biopsy was a first neurological event in 61%, relapsing–remitting in 29% and progressive in 4%. Presentations were typically polysymptomatic, with motor, cognitive and sensory symptoms predominating. Aphasia, agnosia, seizures and visual field defects were observed. At follow-up, 70% developed definite multiple sclerosis, and 14% had an isolated demyelinating syndrome. Median time to second attack was 4.8 years, and median EDSS at follow-up was 3.0. Multiple lesions were present in 70% on pre-biopsy MRI, and in 83% by last MRI, with Barkhof criteria fulfilled in 46% prior to biopsy and 55% by follow-up. Only 17% of cases remained unifocal. Median largest lesion size on T2-weighted images was 4 cm (range 0.5–12), with a discernible size of 2.1 cm (range 0.5–7.5). Biopsied lesions demonstrated mass effect in 45% and oedema in 77%. A strong association was found between lesion size, and presence of mass effect and/or oedema (P < 0.001). Ring enhancement was frequent. Most tumefactive features did not correlate with gender, course or diagnosis. Although lesion size >5 cm was associated with a slightly higher EDSS at last follow-up, long-term prognosis in patients with disease duration >10 years was better (EDSS 1.5) compared with a population-based multiple sclerosis cohort matched for disease duration (EDSS 3.5; P < 0.001). Given the retrospective nature of the study, the precise reason for biopsy could not always be determined. This study underscores the diagnostically challenging nature of CNS IDDs that present with atypical clinical or radiographic features. Most have multifocal disease at onset, and develop RRMS by follow-up. Although increased awareness of this broad spectrum may obviate need for biopsy in many circumstances, an important role for diagnostic brain biopsy may be required in some cases

    Collision sellar lesions: experience with eight cases and review of the literature

    Get PDF
    The concomitant presence of a pituitary adenoma with a second sellar lesion in patients operated upon for pituitary adenoma is an uncommon entity. Although rare, quite a great variety of lesions have been indentified coexisting with pituitary adenomas. In fact, most combinations have been described before, but an overview with information on the frequency of combined pathologies in a large series has not been published. We present a series of eight collision sellar lesions indentified among 548 transsphenoidally resected pituitary adenomas in two Neurosurgical Departments. The histological studies confirmed a case of sarcoidosis within a non-functioning pituitary adenoma, a case of intrasellar schwannoma coexisting with growth hormone (GH) secreting adenoma, two Rathke’s cleft cysts combined with pituitary adenomas, three gangliocytomas associated with GH-secreting adenomas, and a case of a double pituitary adenoma. The pertinent literature is discussed with emphasis on pathogenetic theories of dual sellar lesions. Although there is no direct evidence to confirm the pathogenetic relationship of collision sellar lesions, the number of cases presented in literature makes the theory of an incidental occurrence rather doubtful. Suggested hypotheses about a common embryonic origin or a potential interaction between pituitary adenomas and the immune system are presented
    corecore