644 research outputs found

    Fairea: A Model Behaviour Mutation Approach to Benchmarking Bias Mitigation Methods

    Get PDF
    The increasingly wide uptake of Machine Learning (ML) has raised the significance of the problem of tackling bias (i.e., unfairness), making it a primary software engineering concern. In this paper, we introduce Fairea, a model behaviour mutation approach to benchmarking ML bias mitigation methods. We also report on a large-scale empirical study to test the effectiveness of 12 widely-studied bias mitigation methods. Our results reveal that, surprisingly, bias mitigation methods have a poor effectiveness in 49% of the cases. In particular, 15% of the mitigation cases have worse fairness-accuracy trade-offs than the baseline established by Fairea; 34% of the cases have a decrease in accuracy and an increase in bias. Fairea has been made publicly available for software engineers and researchers to evaluate their bias mitigation methods

    A detailed view into the eruption clouds of Santiaguito volcano, Guatemala, using Doppler radar

    No full text
    Using Doppler radar technology we are able to show that eruptions at Santiaguito volcano, Guatemala, are comprised of multiple explosive degassing pulses occurring at a frequency of 0.2 to 0.3 Hz. The Doppler radar system was installed about 2.7 km away from the active dome on the top of Santa Maria volcano. During four days of continuous measurement 157 eruptive events were recorded. The Doppler radar data reveals a vertical uplift of the dome surface of about 50 cm immediately prior to a first degassing pulse. Particle velocities range from 10 to 15 m/s (in the line of sight of the radar). In 80% of the observed eruptions a second degassing pulse emanates from the dome with significantly higher particle velocities (20-25 m/s again line of sight) and increased echo power, which implies an increase in mass flux. We carry out numerical experiments of ballistic particle transport and calculate corresponding synthetic radar signals. These calculations show that the observations are consistent with a pulsed release of material from the dome of Santiaguito volcano

    Dynamics of mesoscopic precipitate lattices in phase separating alloys under external load

    Full text link
    We investigate, via three-dimensional atomistic computer simulations, phase separation in an alloy under external load. A regular two-dimensional array of cylindrical precipitates, forming a mesoscopic precipitate lattice, evolves in the case of applied tensile stress by the movement of mesoscopic lattice defects. A striking similarity to ordinary crystals is found in the movement of "meso-dislocations", but new mechanisms are also observed. Point defects such as "meso-vacancies" or "meso-interstitials" are created or annihilated locally by merging and splitting of precipitates. When the system is subjected to compressive stress, we observe stacking faults in the mesoscopic one-dimensional array of plate-like precipitates.Comment: 4 pages, 4 figures, REVTE

    Effect of pulsed delivery and bouillon base on saltiness and bitterness perceptions of salt delivery profiles partially substituted with KCl

    Get PDF
    Reducing salt levels in processed food is an important target for a growing numbers of food manufacturers. The effects of pulsed delivery (Dynataste) and bouillon base on saltiness and bitterness perception of partially substituted solutions (KCl) were investigated. Pulsed delivery did not enhance salt perception and resulted in greater Overall Bitterness Scores for the same level of substitution with KCl. The presence of the bouillon base masked to a certain extent the loss of saltiness induced by the substitution and resulted in lower Overall Bitterness Scores of the substituted profiles

    The First Second of Volcanic Eruptions from the Erebus Volcano Lava Lake, Antarctica—Energies, Pressures, Seismology, and Infrasound

    Get PDF
    [1] We describe a multiparameter experiment at Erebus volcano, Antarctica, employing Doppler radar, video, acoustic, and seismic observations to estimate the detailed energy budget of large (up to 40 m-diameter) bubble bursts from a persistent phonolite lava lake. These explosions are readily studied from the crater rim at ranges of less than 500 m and present an ideal opportunity to constrain the dynamics and mechanism of magmatic bubble bursts that can drive Strombolian and Hawaiian eruptions. We estimate the energy budget of the first second of a typical Erebus explosion as a function of time and energy type. We constrain gas pressures and forces using an analytic model for the expansion of a gas bubble above a conduit that incorporates conduit geometry and magma and gas parameters. The model, consistent with video and radar observations, invokes a spherical bulging surface with a base diameter equal to that of the lava lake. The model has no ad hoc free parameters, and geometrical calculations predict zenith height, velocity, and acceleration during shell expansion. During explosions, the energy contained in hot overpressured gas bubbles is freed and partitioned into other energy types, where by far the greatest nonthermal energy component is the kinetic and gravitational potential energy of the accelerated magma shell (\u3e109 J). Seismic source energy created by explosions is estimated from radar measurements and is consistent with source energy determined from seismic observations. For the generation of the infrasonic signal, a dual mechanism incorporating a terminally disrupted slug is proposed, which clarifies previous models and provides good fits to observed infrasonic pressures. A new and straightforward method is presented for determining gas volumes from slug explosions at volcanoes from remote infrasound recordings

    Communicating geographical risks in crisis management : the need for research

    Get PDF
    In any crisis, there is a great deal of uncertainty, often geographical uncertainty or, more precisely, spatiotemporal uncertainty. Examples include the spread of contamination from an industrial accident, drifting volcanic ash, and the path of a hurricane. Estimating spatiotemporal probabilities is usually a difficult task, but that is not our primary concern. Rather, we ask how analysts can communicate spatiotemporal uncertainty to those handling the crisis. We comment on the somewhat limited literature on the representation of spatial uncertainty on maps. We note that many cognitive issues arise and that the potential for confusion is high. We note that in the early stages of handling a crisis, the uncertainties involved may be deep, i.e., difficult or impossible to quantify in the time available. In such circumstance, we suggest the idea of presenting multiple scenarios

    Cloud Photogrammetry from Space

    Get PDF
    The most commonly used method for satellite cloud top height (CTH) compares brightness temperature of the cloud with the atmospheric temperature profile. Because of the uncertainties of this method, we propose a photogrammetric approach. As clouds can move with high velocities, even instruments with multiple cameras are not appropriate for accurate CTH estimation. Here we present two solutions. The first is based on the parallax between data retrieved from geostationary (SEVIRI, HRV band; 1000 m spatial resolution) and polar orbiting satellites (MODIS, band 1; 250 m spatial resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously. However, MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. CTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The second method is based on NASA program Crew Earth observations from the International Space Station (ISS). The ISS has a lower orbit than most operational satellites, resulting in a shorter minimal time between two images, which is needed to produce a suitable parallax. In addition, images made by the ISS crew are taken by a full frame sensor and not a push broom scanner that most operational satellites use. Such data make it possible to observe also short time evolution of clouds
    • …
    corecore