17 research outputs found

    A Mutational Analysis of Conjugation inTetrahymena thermophila

    Get PDF
    AbstractConjugation in the freshwater ciliateTetrahymena thermophilainvolves a developmental program that models meiosis, fertilization, and early developmental events characteristic of multicellular eukaryotes. We describe a gallery of five early-acting conjugation mutations. These mutants,cnj1–5,exhibit phenotypes in which specific steps in the conjugal pathway have been altered or eliminated. Specifically,cnj1andcnj2fail to condense their micronuclear chromatin prior to each of the three prezygotic nuclear divisions. This results in nuclear division failure, failure to replicate DNA, and failure to initiate postzygotic development. Thecnj3mutant appears to exhibit a defect in chromosome separation during anaphase of mitosis.cnj4mutants successfully carry out meiosis I, yet are unable to execute the second meiotic division and abort all further development.cnj5mutants are unable to initiate either meiosis I or meiosis II, yet proceed to execute all subsequent developmental events. These mutant phenotypes are used to draw inferences regarding developmental dependencies that exist within the conjugation program

    noxin, a novel stress-induced gene involved in cell cycle and apoptosis

    Get PDF
    We describe a novel stress-induced gene, noxin, and a knockout mouse line with an inactivated noxin gene. The noxin gene does not have sequelogs in the genome and encodes a highly serine-rich protein with predicted phosphorylation sites for ATM, Akt, and DNA-dependent protein kinase kinases; nuclear localization signals; and a Zn finger domain. noxin mRNA and protein levels are under tight control by the cell cycle. noxin, identified as a nitric oxide-inducible gene, is strongly induced by a wide range of stress signals: gamma- and UV irradiation, hydrogen peroxide, adriamycin, and cytokines. This induction is dependent on p53. Noxin accumulates in the nucleus in response to stress and, when ectopically expressed, Noxin arrests the cell cycle at G1; although it also induces p53, the cell cycle arrest function of Noxin is independent of p53 activity. noxin knockout mice are viable and fertile; however, they have an enlarged heart, several altered hematopoietic parameters, and a decreased number of spermatids. Importantly, loss or downregulation of Noxin leads to increased cell death. Our results suggest that Noxin may be a component of the cell defense system: it is activated by various stress stimuli, helps cells to withdraw from cycling, and opposes apoptosis

    Reactome knowledgebase of human biological pathways and processes

    Get PDF
    Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactome's data content and software can all be freely used and redistributed under open source terms

    Reactome knowledgebase of human biological pathways and processes

    Get PDF
    Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactome's data content and software can all be freely used and redistributed under open source terms

    Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis

    Get PDF
    Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopolesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells

    eNOS activation and regulation

    No full text

    Nitric oxide activates diverse signaling pathways to regulate gene expression

    No full text
    Nitric oxide signaling is crucial for effecting long lasting changes in cells, including gene expression, cell cycle arrest, apoptosis, and differentiation. We have determined the temporal order of gene activation induced by NO in mammalian cells and have examined the signaling pathways that mediate the action of NO. Using microarrays to study the kinetics of gene activation by NO, we have determined that NO induces three distinct waves of gene activity. The first wave is induced within 30 min of exposure to NO and represents the primary gene targets of NO. It is followed by subsequent waves of gene activity that may reflect further cascades of NO-induced gene expression. We verified our results using quantitative real time PCR and further validated our conclusions about the effects of NO by using cytokines to induce endogenous NO production. We next applied pharmacological and genetic approaches to determine the signaling pathways that are used by NO to regulate gene expression. We used inhibitors of particular signaling pathways, as well as cells from animals with a deleted p53 gene, to define groups of genes that require phosphatidylinositol 3-kinase, protein kinase C, NF-kappaB, p53, or combinations thereof for activation by NO. Our results demonstrate that NO utilizes several independent signaling pathways to induce gene expression

    Transgenic mice overexpressing nNOS in the adult nervous system

    No full text
    Nitric oxide (NO) has a profound role in the generation, differentiation, survival, and physiology of neurons. We have created a novel transgenic model to study the action of NO in the adult brain, in which the neuronal isoform of NO synthase (nNOS) is expressed under control of the promoter of the calcium-calmodulin multifunctional kinase IIalpha (CaMKIIalpha) gene. We show that the transgenic nNOS RNA and protein are expressed in the cortex, the hippocampus and the striatum of the transgenic mice. We also show that expression of several genes involved in the protection of neurons from oxidative stress and cell death is not affected in neurons of the transgenic mice. Furthermore, generation of new cells is depressed in the neurogenic brain areas in transgenics. In addition, we analyze gene expression in the hippocampus of the transgenic animals using microarray RNA profiling and Q-PCR. Our experiments describe specific changes in cell division and gene activity in the CaMKII-nNOS transgenic model and demonstrate its utility for studying the action of NO in the adult brain

    Weaning induces NOS-2 expression through NF-κB modulation in the lactating mammary gland: importance of GSH

    Get PDF
    At the end of lactation the mammary gland undergoes involution, a process characterized by apoptosis of secretory cells and tissue remodelling. To gain insight into this process, we analysed the gene expression profile by oligonucleotide microarrays during lactation and after forced weaning. Up-regulation of inflammatory mediators and acute-phase response genes during weaning was found. Expression of IκBα (inhibitory κBα), a protein known to modulate NF-κB (nuclear factor-κB) nuclear translocation, was significantly up-regulated. On the other hand, there was a time-dependent degradation of IκBα protein levels in response to weaning, suggesting a role for NF-κB. Furthermore, we have demonstrated, using chromatin immunoprecipitation assays, binding of NF-κB to the NOS-2 (inducible nitric oxide synthase) promoter at the early onset of events triggered during weaning. The three isoforms of NOS are constitutively present in the lactating mammary gland; however, while NOS-2 mRNA and protein levels and, consequently, NO production are increased during weaning, NOS-3 protein levels are diminished. Western blot analyses have demonstrated that protein nitration is increased in the mammary gland during weaning, but this is limited to a few specific tyrosine-nitrated proteins. Interestingly, inhibition of GSH synthesis at the peak of lactation partially mimics these findings, highlighting the role of NO production and GSH depletion during involution
    corecore