49 research outputs found

    New salt marshes for old: salt marsh creation and management

    Get PDF
    Abstract Salt marshes are vulnerable to rising sea levels, coastal developments, pollution and disturbance, and at the same time they provide economic, social and environmental benefits. Recently salt marsh re-creation has been undertaken in the interest of both sea defence and nature conservation. The vegetation pattern on these newly created marshes is very different from that found on mature marshes. This suggests that the soil conditions may be limiting normal vegetation development and implies that special techniques will be needed to enhance the processes involved. For pioneer salt marsh to develop a proportion of the sediment load in the water covering the marsh at high tide has to be trapped by salt marsh plants and subsequently incorporated into the marsh substrate. This paper presents the results of recent experimental studies in this area of research and examines various aspects of the key processes involved and the critical implications for salt marsh management and coastal defence

    Recent developments in the use of aza-Heck cyclizations for the synthesis of chiral N-heterocycles

    Get PDF
    The scope and mechanism of aza-Heck methodologies that provide chiral heterocyclic systems are outlined.</p

    Restored saltmarshes lack the topographic diversity found in natural habitat

    Get PDF
    Saltmarshes can be created to compensate for lost habitat by a process known as managed realignment (MR), where sea defences are deliberately breached to flood low-lying agricultural land. However, the vegetation that develops on MR sites is not equivalent to natural habitat. In natural sites, surface topography and creek networks are drivers of vegetation diversity, but their development on restored sites has not been well studied. We investigate the topographic characteristics of 19 MR areas, and compare these to nearby natural saltmarshes (representing desired conditions) and to coastal agricultural landscapes (representing conditions prior to MR). From high-resolution LiDAR data, we extracted values of elevation, six measures of surface topography (although two were later excluded due to collinearity), and three measures of creek density. MR and natural marshes differed significantly in all surface topographic indices, with MR sites having lower rugosity and more concave features, with greater potential for water accumulation. MR sites also had significantly lower creek density. MRs and coastal agricultural landscapes were more similar, differing in only one topographic measure. Importantly, there was no relationship between age since restoration and any of the topographic variables, indicating that restored sites are not on a trajectory to become topographically similar to natural marshes. MR schemes need to consider actively constructing topographic heterogeneity; better mirroring natural sites in this way is likely to benefit the development of saltmarsh vegetation, and will also have implications for a range of ecosystem functions

    Saltmarsh creation and management for coastal defence

    No full text

    Age and significance of alluvium in the windrush valley - reply

    No full text

    Age and significance of alluvium in the windrush valley, oxfordshire

    No full text
    RESP-798

    Age and significance of alluvium in the Windrush Valley (reply)

    No full text
    corecore