146 research outputs found
Development of a variational SEASAT data analysis technique
Oceans are data-sparse areas in terms of conventional weather observations. The surface pressure field obtained solely by analyzing the conventional weather data is not expected to possess high accuracy. On the other hand, in entering asynoptic data such as satellite-derived temperature soundings into an atmospheric prediction system, an improved surface analysis is crucial for obtaining more accurate weather predictions because the mass distribution of the entire atmosphere will be better represented in the system as a result of the more accurate surface pressure field. In order to obtain improved surface pressure analyses over the oceans, a variational adjustment technique was developed to help blend the densely distributed surface wind data derived from the SEASAT-A radar observations into the sparsely distributed conventional pressure data. A simple marine boundary layer scheme employed in the adjustment technique was discussed. In addition, a few aspects of the current technique were determined by numerical experiments
Development of the variational SEASAT data analysis technique
Surface winds are closely associated with the surface pressure gradient. The variational SEASAT data analysis technique was designed to improve the sea level pressure analysis in the data sparse areas. The SEASAT-derived surface wind data were compared with observations from the Joint Air Sea Interaction Experiment (JASIN) and it was found that the satellite-derived sea surface wind has an accuracy of up to + or - 2 m/s in speed and + or - 20 deg in direction. These numbers are considered characteristic of the retrieved SEASAT wind field. By combining the densely spaced SEASAT-derived wind data with the sparsely distributed sea-level pressure observation via a variational adjustment technique subject to some appropriate physical constraint(s), an improvement in the sea-level pressure analysis is expected. It is demonstrated that a simple marine boundary layer scheme in conjunction with a variational adjustment technique can be developed to help improve the sea-level pressure analysis by the SEASAT-derived wind of a limited-area domain in the ocean
Nullification functors and the homotopy type of the classifying space for proper bundles
Let G be a discrete group for which the classifying space for proper
G-actions is finite-dimensional. We find a space W such that for any such G,
the classifying space PBG for proper G-bundles has the homotopy type of the
W-nullification of BG. We use this to deduce some results concerning PBG and in
some cases where there is a good model for PBG we obtain information about the
BZ/p-nullification of BG.Comment: Published by Algebraic and Geometric Topology at
http://www.maths.warwick.ac.uk/agt/AGTVol5/agt-5-46.abs.htm
Homotopy colimits and global observables in Abelian gauge theory
We study chain complexes of field configurations and observables for Abelian gauge theory on contractible manifolds, and show that they can be extended to non-contractible manifolds by using techniques from homotopy theory. The extension prescription yields functors from a category of manifolds to suitable categories of chain complexes. The extended functors properly describe the global field and observable content of Abelian gauge theory, while the original gauge field configurations and observables on contractible manifolds are recovered up to a natural weak equivalence
Rainfall-induced volcanic activity on Montserrat
Dome-forming volcanic eruptions cyclically extrude bodies of lava over several months, which then become gravitationally unstable and collapse, generating pyroclastic flows. On 29 July 2001 extreme rainfall over Montserrat coincided with a major collapse of the Soufriere Hills lava dome. We present rainfall and seismic records that demonstrate, for the first time, a relationship between intense rainfall and lava dome collapse, with associated pyroclastic flow generation. After seven months of little rain and a period of sustained dome growth, the onset of intense rain was followed within hours by dome collapse and pyroclastic flows. The large-scale weather system responsible for the rain was identifiable in satellite images and predicted by meteorological forecasts issued 60 hours prior to the volcanic activity. It is suggested that weather prediction of intense rainfall be incorporated with existing geophysical and geochemical measurements to improve warnings of these hazardous events
Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations
The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed
-Algebras, the BV Formalism, and Classical Fields
We summarise some of our recent works on -algebras and quasi-groups
with regard to higher principal bundles and their applications in twistor
theory and gauge theory. In particular, after a lightning review of
-algebras, we discuss their Maurer-Cartan theory and explain that any
classical field theory admitting an action can be reformulated in this context
with the help of the Batalin-Vilkovisky formalism. As examples, we explore
higher Chern-Simons theory and Yang-Mills theory. We also explain how these
ideas can be combined with those of twistor theory to formulate maximally
superconformal gauge theories in four and six dimensions by means of
-quasi-isomorphisms, and we propose a twistor space action.Comment: 19 pages, Contribution to Proceedings of LMS/EPSRC Durham Symposium
Higher Structures in M-Theory, August 201
Higher Structures in M-Theory
The key open problem of string theory remains its non-perturbative completion
to M-theory. A decisive hint to its inner workings comes from numerous
appearances of higher structures in the limits of M-theory that are already
understood, such as higher degree flux fields and their dualities, or the
higher algebraic structures governing closed string field theory. These are all
controlled by the higher homotopy theory of derived categories, generalised
cohomology theories, and -algebras. This is the introductory chapter
to the proceedings of the LMS/EPSRC Durham Symposium on Higher Structures in
M-Theory. We first review higher structures as well as their motivation in
string theory and beyond. Then we list the contributions in this volume,
putting them into context.Comment: 22 pages, Introductory Article to Proceedings of LMS/EPSRC Durham
Symposium Higher Structures in M-Theory, August 2018, references update
- …