17 research outputs found
Performance of a DI diesel engine fuelled by blends of diesel and kiln-produced pyroligneous tar
This paper presents results of experiments undertaken to determine the performance of a direct injection (DI) diesel engine fuelled by blends of kiln-produced pyroligneous tar (PT) and diesel. The PT was sourced from Bulgaria where it was produced from a pine feedstock via a traditional kiln method that involves separation of the aqueous pyroligneous acid fraction. The tar is characterized by high carbon concentration, viscosity and high heating value. Although high, at fuel injection temperatures over 120 1C the tar’s viscosity is likelyto be lower than diesel. Analysis by GC revealed a number of compounds typically extracted from wood-based tar products. Blends containing 20% and 40% PT with diesel were tested in a 4-cylinder, 4-stoke DI diesel engine. The blends are stable and readily formed. Little difference in engine performance relative to diesel was found for 20% PT blends. PT blends (40%) exhibit significantly higher in-cylinder gas temperature and pressure. Ignition delay for both blends is longer than diesel, as is the fuel burn rate during the premixed stage of the combustion. During the diffusion stage of combustion, the fuel burn rate is lower relative to diesel. The performance of engines fuelled by blends containing 40% or more PTcould be improved through optimization of engine systems