200 research outputs found

    Turbulence attenuation by large neutrally buoyant particles

    Get PDF
    Turbulence modulation by inertial-range-size, neutrally-buoyant particles is investigated experimentally in a von K\'arm\'an flow. Increasing the particle volume fraction Φv\Phi_\mathrm{v}, maintaining constant impellers Reynolds number attenuates the fluid turbulence. The inertial-range energy transfer rate decreases as Φv2/3\propto\Phi_\mathrm{v}^{2/3}, suggesting that only particles located on a surface affect the flow. Small-scale turbulent properties, such as structure functions or acceleration distribution, are unchanged. Finally, measurements hint at the existence of a transition between two different regimes occurring when the average distance between large particles is of the order of the thickness of their boundary layers.Comment: 7 pages, 4 figure

    New pandemics: HIV and AIDS, HCV and chronic hepatitis, Influenza virus and flu

    Get PDF
    New pandemics are a serious threat to the health of the entire world. They are essentially of viral origin and spread at large speed. A meeting on this topic was held in Lyon, France, within the XIXth Jacques Cartier Symposia, a series of France-Québec meetings held every year. New findings on HIV and AIDS, on HCV and chronic hepatitis, and an update on influenza virus and flu were covered during this meeting on December 4 and 5, 2006. Aspects of viral structure, virus-host interactions, antiviral defenses, drugs and vaccinations, and epidemiological aspects were discussed for HIV and HCV. Old and recent data on the flu epidemics ended this meeting.The meeting sponsors were the Centre Jacques Cartier, the Agence Nationale de Recherches sur le SIDA et les hépatites (ANRS) France, the Ecole Normale Supérieure en Sciences de Lyon, The Réseau SIDA et Maladies Infectieuses from the Fond de la Recherche en Santé du Québec (FRSQ), The Institut de Recherches Cliniques de Montréal (IRCM), Boehringer Ingelheim, Sanofi Aventis, ViroChem Pharma and Merck Frosst. The authors thank the speakers for their meeting abstracts and comments that helped writing this review

    Simultaneous 3D measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow

    Get PDF
    We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/{\eta} \approx 100) than the Kolmogorov length scale {\eta} in a von K\'arm\'an swirling water flow (R{\lambda} \approx 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. This measurement technique has many additional advantages that will make it useful to address other problems such as particle collisions, dynamics of non-spherical solid objects, or even of wet granular matter.Comment: 18 pages, 7 figures, submitted to "Measurement Science and Technology" special issue on "Advances in 3D velocimetry

    PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow,

    Full text link
    The aim of the paper is to discuss the main characteristics of a complete theoretical and numerical model for turbulent polydispersed two-phase flows, pointing out some specific issues. The theoretical details of the model have already been presented [Minier and Peirano, Physics Reports, Vol. 352/1-3, 2001 ]. Consequently, the present work is mainly focused on complementary aspects, that are often overlooked and that require particular attention. In particular, the following points are analysed : the necessity to add an extra term in the equation for the velocity of the fluid seen in the case of twoway coupling, the theoretical and numerical evaluations of particle averages and the fulfilment of the particle mass-continuity constraint. The theoretical model is developed within the PDF formalism. The important-physical choice of the state vector variables is first discussed and the model is then expressed as a stochastic differential equation (SDE) written in continuous time (Langevin equations) for the velocity of the fluid seen. The interests and limitations of Langevin equations, compared to the single-phase case, are reviewed. From the numerical point of view, the model corresponds to an hybrid Eulerian/Lagrangian approach where the fluid and particle phases are simulated by different methods. Important aspects of the Monte Carlo particle/mesh numerical method are emphasised. Finally, the complete model is validated and its performance is assessed by simulating a bluff-body case with an important recirculation zone and in which two-way coupling is noticeable.Comment: 23 pages, 10 figure

    Convergent Chaos

    Get PDF
    Chaos is widely understood as being a consequence of sensitive dependence upon initial conditions. This is the result of an instability in phase space, which separates trajectories exponentially. Here, we demonstrate that this criterion should be refined. Despite their overall intrinsic instability, trajectories may be very strongly convergent in phase space over extremely long periods, as revealed by our investigation of a simple chaotic system (a realistic model for small bodies in a turbulent flow). We establish that this strong convergence is a multi-facetted phenomenon, in which the clustering is intense, widespread and balanced by lacunarity of other regions. Power laws, indicative of scale-free features, characterize the distribution of particles in the system. We use large-deviation and extreme-value statistics to explain the effect. Our results show that the interpretation of the 'butterfly effect' needs to be carefully qualified. We argue that the combination of mixing and clustering processes makes our specific model relevant to understanding the evolution of simple organisms. Lastly, this notion of convergent chaos, which implies the existence of conditions for which uncertainties are unexpectedly small, may also be relevant to the valuation of insurance and futures contracts

    Dynamics and statistics of heavy particles in turbulent flows

    Get PDF
    We present the results of Direct Numerical Simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Taylor's Reynolds number is around 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical evolution. We discuss both the transient and the stationary regimes. In the transient regime, we study the growt of inhomogeneities in the particle spatial distribution driven by the preferential concentration out of intense vortex filaments. In the stationary regime, we study the acceleration fluctuations as a function of the Stokes number in the range [0.16:3.3]. We also compare our results with those of pure fluid tracers (St=0) and we find a critical behavior of inertia for small Stokes values. Starting from the pure monodisperse statistics we also characterize polydisperse suspensions with a given mean Stokes.Comment: 13 pages, 10 figures, 2 table

    An Euler Solver Based on Locally Adaptive Discrete Velocities

    Full text link
    A new discrete-velocity model is presented to solve the three-dimensional Euler equations. The velocities in the model are of an adaptive nature---both the origin of the discrete-velocity space and the magnitudes of the discrete-velocities are dependent on the local flow--- and are used in a finite volume context. The numerical implementation of the model follows the near-equilibrium flow method of Nadiga and Pullin [1] and results in a scheme which is second order in space (in the smooth regions and between first and second order at discontinuities) and second order in time. (The three-dimensional code is included.) For one choice of the scaling between the magnitude of the discrete-velocities and the local internal energy of the flow, the method reduces to a flux-splitting scheme based on characteristics. As a preliminary exercise, the result of the Sod shock-tube simulation is compared to the exact solution.Comment: 17 pages including 2 figures and CMFortran code listing. All in one postscript file (adv.ps) compressed and uuencoded (adv.uu). Name mail file `adv.uu'. Edit so that `#!/bin/csh -f' is the first line of adv.uu On a unix machine say `csh adv.uu'. On a non-unix machine: uudecode adv.uu; uncompress adv.tar.Z; tar -xvf adv.ta

    Characterization of the TRBP domain required for Dicer interaction and function in RNA interference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC). While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP) that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain.</p> <p>Results</p> <p>We show that the TRBP binding site in Dicer is a 165 amino acid (aa) region located between the ATPase and the helicase domains. The binding site in TRBP is a 69 aa domain, called C4, located at the C-terminal end of TRBP. The TRBP1 and TRBP2 isoforms, but not TRBPs lacking the C4 site (TRBPsΔC4), co-immunoprecipitated with Dicer. The C4 domain is therefore necessary to bind Dicer, irrespective of the presence of RNA. Immunofluorescence shows that while full-length TRBPs colocalize with Dicer, TRBPsΔC4 do not. <it>tarbp2</it><sup>-/- </sup>cells, which do not express TRBP, do not support RNA interference (RNAi) mediated by short hairpin or micro RNAs against EGFP. Both TRBPs, but not TRBPsΔC4, were able to rescue RNAi function. In human cells with low RNAi activity, addition of TRBP1 or 2, but not TRBPsΔC4, rescued RNAi function.</p> <p>Conclusion</p> <p>The mapping of the interaction sites between TRBP and Dicer show unique domains that are required for their binding. Since TRBPsΔC4 do not interact or colocalize with Dicer, we suggest that TRBP and Dicer, both dsRBPs, do not interact through bound dsRNA. TRBPs, but not TRBPsΔC4, rescue RNAi activity in RNAi-compromised cells, indicating that the binding of Dicer to TRBP is critical for RNAi function.</p

    Automatic Assessment of Speech Capability Loss in Disordered Speech

    Get PDF
    International audienceIn this article, we report on the use of an automatic technique to assess pronunciation in the context of several types of speech disorders. Even if such tools already exist, they are more widely used in a different context, namely, Computer-Assisted Language Learning, in which the objective is to assess nonnative pronunciation by detecting learners' mispronunciations at segmental and/or suprasegmental levels. In our work, we sought to determine if the Goodness of Pronunciation (GOP) algorithm, which aims to detect phone-level mispronunciations by means of automatic speech recognition, could also detect segmental deviances in disordered speech. Our main experiment is an analysis of speech from people with unilateral facial palsy. This pathology may impact the realization of certain phonemes such as bilabial plosives and sibilants. Speech read by 32 speakers at four different clinical severity grades was automatically aligned and GOP scores were computed for each phone realization. The highest scores, which indicate large dissimilarities with standard phone realizations, were obtained for the most severely impaired speakers. The corresponding speech subset was manually transcribed at phone level; 8.3% of the phones differed from standard pronunciations extracted from our lexicon. The GOP technique allowed the detection of 70.2% of mispronunciations with an equal rate of about 30% of false rejections and false acceptances. Finally, to broaden the scope of the study, we explored the correlation between GOP values and speech comprehensibility scores on a second corpus, composed of sentences recorded by six people with speech impairments due to cancer surgery or neurological disorders. Strong correlations were achieved between GOP scores and subjective comprehensibility scores (about 0.7 absolute). Results from both experiments tend to validate the use of GOP to measure speech capability loss, a dimension that could be used as a complement to physiological measures in pathologies causing speech disorders
    corecore