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Abstract. Chaos is widely understood as being a consequence of sensitive

dependence upon initial conditions. This is the result of an instability in phase space,

which separates trajectories exponentially. Here, we demonstrate that this criterion

should be refined. Despite their overall intrinsic instability, trajectories may be very

strongly convergent in phase space over extremely long periods, as revealed by our

investigation of a simple chaotic system (a realistic model for small bodies in a turbulent

flow). We establish that this strong convergence is a multi-facetted phenomenon, in

which the clustering is intense, widespread and balanced by lacunarity of other regions.

Power laws, indicative of scale-free features, characterize the distribution of particles

in the system. We use large-deviation and extreme-value statistics to explain the

effect. Our results show that the interpretation of the ‘butterfly effect’ needs to be

carefully qualified. We argue that the combination of mixing and clustering processes

makes our specific model relevant to understanding the evolution of simple organisms.

Lastly, this notion of convergent chaos, which implies the existence of conditions for

which uncertainties are unexpectedly small, may also be relevant to the valuation of

insurance and futures contracts.
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1. Introduction

The concept of ‘chaos’ is one of the most salient paradigms of modern science [1].

The significance of the central notion of exponential sensitivity to initial conditions is

emblematically illustrated by the ‘butterfly effect’. The question “Does the flap of a

butterfly’s wings in Brazil set off a tornado in Texas?” was famously posed by E. N.

Lorenz in a conference talk in 1972 [2, 3, 4]. In the roughly half century since Lorenz’s

work, his question has invariably been conflated with: “Can the flap of a butterfly’s

wings ... ?” , which focuses on the possibility that an infinitesimally small perturbation

affects the fate of a system, rather than whether the perturbation inevitably produces a

large effect. The affirmative answer to that question has cemented sensitive dependence

on initial conditions as a hallmark of chaotic systems, the weather system included.

But a deep, outstanding question behind the butterfly effect lies in Lorenz’s original

formulation: Are perturbations destined to alter the course of large-scale patterns in

turbulent systems? Or could regions of the phase space of a chaotic dynamical system

be screened off from small perturbations? This is the real import of Lorenz’s Brazilian

butterfly, and we note that Lorenz never definitively answered his original question.

It is the purpose of this paper to suggest an important and widely applicable

refinement of the concept of chaos, based upon results illustrated by figure 1. This

shows trajectories of particles in a stochastic model for the motion of particles in a

turbulent fluid flow. In order to simplify the discussion we consider a one-dimensional

model, where the position of a particle is x(t) at time t (the model is defined precisely

by Eq. (1), discussed in Section 2). In this model, it has been proven that trajectories

separate exponentially. In technical terms, the rate of separation of trajectories (the

Lyapunov exponent[1]) is positive. However, the trajectories illustrated in figure 1 show

a strong tendency to cluster together, despite the fact that they must eventually diverge.

We emphasise that the clustering displayed in figure 1 is different from the fractal

patterns which are seen in illustrations of strange attractors (such as the Lorenz

equations or the Henon map) in phase space [1]. These systems have contraction in

some directions in phase space, and the paths of the trajectories cluster together into

bundles. However, the formation of these bundles does not imply that phase points

converge, because they can separate along the line tangent to the trajectory bundle.

The definition of chaos implies that this separation is expected to increase exponentially.

Our figure 1, however, shows how trajectory separations do behave as a function of time,

revealing that the eventual exponential separation may only be achieved after episodes

of strong convergence.

In several one-dimensional chaotic systems, it has been observed that trajectories

may show a temporary convergence preceding their eventual separation (see, for example

[5], [6]), and it has been previously been argued that positivity of the Lyapunov exponent

may not be a sufficiently precise criterion for distinguishing chaotic behaviour [7, 8].

Figure 1 reveals that the convergence can lead to clusters of trajectories, over times

which are much longer than the expected divergence time. Additionally, figure 1 reveals
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Figure 1. Trajectories, x(t), for the dynamical system described by Eq. (1): many

trajectories show strong and long lasting convergence, despite the fact that they must

ultimately diverge. The colormap is chosen so that blue and yellow correspond to

sparse and highly dense regions, respectively. Parameter values are quoted in the

text. Clusters of trajectories can persist over durations long compared to the expected

separation time, which, with the model used here, is ≈ 15/γ.

that the simulated trajectories tend to form surprisingly dense clusters. Quantitatively,

for over 50% of the time, 10% of the 1.5× 104 trajectories used in figure 1 are clustered

into a region of width ∆x = L/4000 ≈ 10−3, where L = 2π is the domain size. At some

instants, up to 70% of the total number of trajectories can accumulate in a region of

size L/4000.

Thus, the phenomenon illustrated in Figure 1 indicates that, despite the intrinsic

unpredictability of the system on very long time scales, there may be basins in the

space of initial conditions which attract a significant fraction of the phase space over a

finite time, giving a final position which is highly insensitive to the initial conditions.

If the initial conditions which are of physical interest lie within one of these basins, the

behaviour of the system can be computed accurately for a time which is many multiples

of the inverse of the Lyapunov coefficient. The possibility of the butterfly effect is

contained in the definition of chaos. Our results, however, indicate that the standard

definition of chaos, dependent upon a positive Lyapunov exponent, does not necessarily

imply a sensitive dependence upon initial conditions in practical applications, where we

are only concerned with finite times.

In this paper we discuss various quantitative aspects of the clustering effect shown

in figure 1. After introducing a canonical model in section 2, we give a summary of

our results on the strength of the effect (section 3). When we examine the structure
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of the patterns in figure 1 statistically, we find (section 4) that power-law relations

are ubiquitous, indicating scale-free behaviour with universal characteristics [9]. In

section 5 we explain strong convergence effect quantitatively by considering the finite-

time Lyapunov exponent. Using a combination of large-deviation and extreme-value

statistics approaches, we have been able to show that the minimum value of the finite-

time Lyapunov exponent can remain negative for a very long time. In section 6 we argue

that some trajectories may show perpetually convergent behaviour. The phenomena

described in our studies are expected to be realised in a wide range of physically relevant

models, and section 7 discusses possible areas of application.

2. A simple chaotic system

To stress the notion of intrinsic stochasticity in dynamical systems, the most intensively

studied models for chaos are purely deterministic. For the purpose of understanding

generic physical processes, however, these models may lead to the physically artificial

situation where large regions of phase space are inaccessible at long time. In many

extended physical systems, some degrees of freedom play a minor role, and can be

modelled stochastically. In addition, dynamical models that contain random elements

are less prone to lead to empty regions of phase space. These considerations provide

a strong physical motivation to consider a dynamical model with random elements. In

such a model, the emergence of sparse regions in phase space, as found e.g. in the case of

inertial particles in turbulent flows [10], necessarily results from a nontrivial dynamical

property of the system.

We therefore propose to consider a model in which the trajectories have a continuous

dependence upon the phase point, but where the dynamics contains random elements.

In order to eliminate irrelevant details, it is also desirable to have a model for which

statistics of the phase-space velocity are invariant under translations in time and space.

Among many possible abstract dynamical systems containing stochastic processes

which satisfy these criteria, we have chosen a model which has a very direct physical

interpretation, and which has already been extensively studied [11]. The model that

we consider is a realistic description of a ubiquitous physical phenomenon, namely the

motion of small particles in a randomly fluctuating flow, mimicking a turbulent fluid.

The equations of motion are [12, 13]

ẋ = v,

v̇ = γ[u(x, t)− v]. (1)

Here γ is a constant describing the rate of damping of motion of a small particle relative

to the fluid and u(x, t) is a randomly fluctuating velocity field of the fluid in which

the particles are suspended. Figure 1 illustrates a solution of (1) on the interval [0, L]

with periodic boundary conditions, and a velocity field where the correlation function

is white noise in time, satisfying 〈u(x, t)〉 = 0 and 〈u(x, t)u(x′, t′)〉 = δ(t− t′)C(x− x′)
(angular brackets denote averages throughout). Denoting the separation between two
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points x and x′ by ∆x, the functional form of the correlation function is C(∆x) =

ε2ξ2γ exp (−∆x2/2ξ2), where ξ is the correlation length and ε is a coupling constant.

The numerical parameters were L = 2π, ξ = 0.08, γ = 0.0112 and ε = 1.25 εc, where

εc ≈ 1.331 is the value above which the Lyapunov exponent becomes positive[14].

Numerically, we have integrated the system Eq. (1) by a straightforward Euler scheme,

as the presence of the noise term in (1), u(x, t), makes the use of higher order schemes

excessively involved [15]. We thoroughly checked that numerical accuracy was not an

issue, by making sure that the statistical results determined numerically did not change

when decreasing the time step.

The results obtained with model (1) for a simple 1-dimensional system will be

corroborated qualitatively by the results of a model of a compressible 2-dimensional

flow, presented in Section 7.

3. Characterising the strong convergence of trajectories.

The finite-time Lyapunov exponent (FTLE) at time t for a trajectory starting at x0 is

defined by [1]

z(t) =
1

t
ln

∣∣∣∣∂xt∂x0

∣∣∣∣
x(0)=x0

, (2)

where xt denotes position at time t.

If z(t) is negative, this implies that nearby trajectories are converging towards each

other. Figure 2(a) compares the minimum value of the FTLE over a sample of M

trajectories, denoted as zmin(t), with the average value of z(t), termed the Lyapunov

exponent λ. The crucial condition for chaos is that λ is positive. However, in our

simulations we find that the minimum value is negative up to a very long time, indicating

that some trajectories show very long periods of convergence. In section 5 we argue that

for a fixed number of particles M � 1, the minimal FTLE approaches λ algebraically

as t→∞ with

λ− zmin(t) ∼ f(M)√
t
, (3)

where f(M) is a function which increases monotonically (but slowly - approximately

logarithmically) with M . Figure 2(a) shows the mean value of the minimum FTLE

for (1), compared with a fit proportional to t−α, where α is a power close to 1/2 (the

parameters are the same as for Figure 1).

While the FTLE is negative, nearby trajectories are converging towards each other.

Equation (3) implies that the FTLE can be, in principle, made negative for arbitrarily

long times by increasing the number of trajectories. This indicates that the closest

approach of trajectories should decrease very rapidly as M increases. This fact is

illustrated in figure 2(b), where we show how the smallest separation δxmin between

any trajectories of the flow illustrated in figure 1 decreases as the number of trajectories

M increases. Evaluating an ensemble average of δxmin, we find a power-law behaviour,

〈δxmin〉 ∼M−Γ, for 10 < M < 20000 with Γ ≈ 1.6.
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(a)

(b)

(c)

Figure 2. (a) The minimum of the finite time Lyapunov exponent over M trajectories

can remain negative, indicating converging trajectories, for very long times. It does

converge to the mean Lyapunov exponent λ = 〈z(t)〉 (positive for a chaotic system),

but the convergence described by (3) is very slow. The characteristic time of trajectory

separation is γ/λ ≈ 15. The exponent of the power law fit (dashed line) is α ≈ 0.6. (b)

The smallest separation between M initially uniformly distributed trajectories satisfied

δxmin ∼M−Γ with Γ ≈ 1.6. (c) Cumulative probability for the value of the finite-time

Lyapunov exponent, z(t), at different values of the time (in dimensionless units). The

distribution of z(t) is very broad, even for large values of t. In all panels the parameters

are the same as for Figure 1.

Figures 2(a) and 2(b) present evidence that the most strongly converging

trajectories lead to very high particle density. Figure 2(c) illustrates a complementary

aspect of this phenomenon, by showing that converging regions occupy a large fraction

of the phase space of our model. The cumulative PDF of z is very broad: even at time

γt = 51.2 (time has been made dimensionless by using the damping rate in (1)), the

probability of z being negative is as high as ≈ 1/3.
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Figure 3. (a) The distribution of the numbers of particles in the trails is very broad,

and is well approximated by a power-law in the small-mass limit. (b, c) Plots of the

probability P (N , δx) for finding N particles in a cluster of size δx. There are power-

law dependencies, with two different exponents characterising the sparse (b) and dense

(c) regions. For this figure we used ε = 1.75εc. (d, e) Probability distributions of the

areas A and lifetimes T of voids which are defined as the grey areas in panel (d).

4. Scale-free behaviour

Figure 1 shows evidence that the trajectories cluster into groups which we term ‘trails’.

In figures 2(a) and 2(b) we showed evidence that there is a very broad distribution of

density within these trails, including regions of extremely strong convergence. We also

see evidence that the distribution of the numbers of trajectories in each trail is very

broad, and characterised by a power-law. Figure 3(a) shows the probability distribution

of the weights of trails for (1) for the parameters used in figure 1: we plotted the

distribution of the number of trajectories inside an interval of length ∆x = L/4000. We

find that discrete models for particle trajectories, analogous to the Scheidegger river

model [16, 17], also show a similar power-law distribution of trail weights, indicating

that this power-law is not a consequence of differential structure of the flow, and is

therefore independent of properties of the FTLE.

We have described power laws which characterise the dense regions of figure 1. It

is also of interest to understand the sparsely covered regions of this plot, and we find

evidence that lacunarity of this image is also characterised by power laws. Let P (N , δx)

be the probability that an interval of width δx surrounding a given trajectory containsN
other trajectories. In figures 3(b,c) we plot P (N , δx) versus N , on doubly-logarithmic

scales, for several values of δx. The plots suggest that when δx � ξ, P (N , δx) has a
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power-law dependence upon N
P (N , δx) ∼ N β (4)

with two different exponents, β1 > 0 when N is below the position of the peak at Nmax,

and a different exponent β2 < 0 above the peak. The exponents β1 and β2 depend upon

ε (the coupling constant), but not upon δx (interval width). We find that the exponent

β1 approaches zero as ε→ εc: we used a larger value, ε = 1.75εc in figures 3(b,c) so that

P (N , δx) would show typical behaviour, with a clearly defined maximum.

As well as investigating the sparse regions of figure 1, we also investigated the

PDF of the sizes of the voids, where there are no trajectories. Figures 3(d,e) show the

definition of the area A and lifetime T of a void and how they are statistically distributed.

Both plots show clear evidence for power laws at large values, with exponents −4/3 and

−3/2 respectively (again, we used the same parameters as for figure 1). These exponents

are readily explained by a model involving first passage processes.

It is well known that dynamical systems may have attractors with a fractal measure

(often called strange attractors), thus leading to fractal clustering in phase space. This

implies a power-law dependence of the mean number of trajectories 〈N〉 in a ball of

radius δx surrounding a given trajectory: 〈N〉 ∼ δxD2 , where D2 is a fractal dimension

which is known as the correlation dimension[18]. The power-laws which we have

described, however, go beyond the fractal properties of strange attractors: whereas the

fractal dimension describes the spatial structure of the most densely occupied regions, (4)

describes the probability distribution of the amount of material in a region, rather than

its spatial structure. In addition, the existence of more than one exponent demonstrates

that our approach uncovers new properties of the system. Figures 2(b) and 3(b,c)

indicate that the power-law distributions describe the sparsely occupied regions, as well

as the dense regions. It is also interesting to note that the usual explanation for the

fractal structure of the strange attractor, involving stretching and folding in phase space,

is not applicable to this model[19].

5. Theory for minimum FTLE

Here we present arguments which support equation (3). The arguments are most

transparently presented for one-dimensional maps. They are also applicable to the

continuous models such as equations (1) and (26), by considering the evolution over a

finite time interval. For a one-dimensional map xn+1 = Fn(xn), the finite-time Lyapunov

exponent of a trajectory with initial position x0 after N iterations is

z(x0, N) =
1

N
ln

(
∂xN
∂x0

)
. (5)

If the trajectory reaches position xj(x0) after j steps, starting from initial position x0,

then (using the chain rule) z(x0, N) is a mean value of logarithms of gradients of the
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map along the trajectory:

z(x0, N) =
1

N

N∑
j=1

ln |F ′j(xj(x0))| . (6)

The Lyapunov exponent [1] is λ = limN→∞ z(x0, N). We quantify the closest approaches

of trajectories by considering the minimal value of the FTLE for a set of M trajectories

after N iterations of the map. This will be denoted by zmin(N,M). For any fixed value

of M , no matter how large, this quantity converges to λ as N →∞.

The determination of zmin(N,M) is a problem which combines the large-deviation

principal with extreme-value statistics. Because the dynamics is assumed to be chaotic,

the FTLE (as expressed in equation (6)) may be regarded as a mean value of a sequence

of random variables. The probability distribution of the FTLE can then be described

by large deviation theory [20, 21]. The fundamental assumptions of this approach can

be contained in the assumption that, for large N the probability density of z has the

asymptotic form

P (z) ∼ exp[−NJ(z)] (7)

where J(z) is a function which is termed a rate function or entropy function [20, 21].

If we take a fixed number of trajectories and consider the long-time limit, N →∞, the

M different trajectories may be assumed to be drawn independently from a probability

density in the large deviation theory form, equation (7). We are interested in the

smallest value of z for this sample of M trajectories, zmin. This problem in extreme-

value statistics can be addressed by the method introduced by Gumbel [22]. In order to

make a rough estimate of zmin(N,M), it is sufficient to find the value of z for which the

exponential smallness of the probability density balances the large number of samples,

M , that is

MP (zmin) ∼ 1 . (8)

In terms of the large deviation entropy function, this condition becomes:

M exp[−NJ(zmin)] = 1. The logarithm of this equation gives the condition

lnM −NJ(zmin) = 0 . (9)

Now consider how equation (3) follows from equation (9). In the limit as N → ∞,

where zmin approaches λ, we are concerned with small values of J(z), where the entropy

can be approximated by a quadratic function:

J(z) =
(z − λ)2

2σ2
(10)

indicating that equation (9) takes the form of equation (3), with f(M) = σ
√

2 lnM .

However, when we made a careful numerical investigation of the distribution of

zmin(N,M), we found that this expression does not give an accurate estimate for f(M).

In the following, we discuss our conclusions about the correct form for f(M).

Firstly, we follow Gumbel [22] to determine the probability density of the minimum

value more precisely than (9). Consider a set of M random numbers zi which are drawn
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independently from the same distribution. We require the probability density ρmin for

the smallest of these M samples, zmin. If the probability density of a given observation

is P (z) and its corresponding cumulative probability is Q(z), the probability of M

observations being less than z is Q(z)M . The corresponding probability density for the

minimum is

ρmin(z) =
d

dz
[Q(z)]M = M P (z)[Q(z)]M−1 . (11)

When M � 1, the support of this function lies at a point where 1 − Q is very small,

and the factor Q(z)M−1 = exp[(M − 1) lnQ(z)] is estimated by using Watson’s lemma

to approximate 1 − Q(z). For Gaussian P (z), as described by (10), we find that the

PDF of zmin is approximated by

ρmin(z) = C Z F (Y ) (12)

where C is a normalisation constant, and

Z =
(λ− z)

√
N

σ
, Y =

Z2

2
+ ln

(√
2π|Z|

)
− ln M (13)

with

F (Y ) = exp[−(Y + exp(−Y ))] . (14)

Equations (12), (13) and (14) indicate that the typical size of zmin is of the form of

equation (3), where the function f(M) is actually a generalised Lambert function rather

than a logarithm. A numerical integration indicates that the mean and variance of the

minimum of the scaled variable Zmin are, respectively,

〈Zmin〉 ≈ Z̄ − 0.41√
ln M

, Var(Zmin) ≈ 0.85

ln M
(15)

where Z̄ satisfies Y (Z̄,M) = 0.

Now let us consider some numerical evidence on the applicability of the distribution

defined by equations (12)-(14). In order to be able to make a thorough numerical study

we examined a simplified version of the equation of motion (1), in the form of a map

termed the correlated random walk [19]:

xn+1 = xn + fn(xn) (16)

where fn(x) are continuous and bounded random functions, drawn by independent

sampling from an ensemble at each iteration. This map is a generalisation of a random

walk, and can be used as a discrete model for advection of particles in a random flow[19].

Our numerical studies considered the case where fn(x) has a Gaussian distribution,

with the following statistics:

〈fn(x)〉 = 0

〈fn(x)fn′(x′)〉 = ε2ξ2 exp

[
−(x− x′)2

2ξ2

]
δnn′ . (17)

We generated the fn(x) with approximately this correlation function by means of Fourier

series, with period L satisfying ξ/L � 1. The iterates xn are confined to the interval
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Figure 4. Probability distribution of the minimum FTLE for equation (16), for a

sample of M = 1000 trajectories after N = 200 iterations, accumulating results using

2.5×104 seeds of the random process in (17). This is compared with a fit to equations

(12)-(14): the effective number of trajectories was Meff = 35.8, and the variance

σeff = 1.2σ.

[0, L] by adding an integer multiple of L to xn every time a particle leaves the interval.

This gives statistics which become stationary as n → ∞. The quantities λ and σ are

obtained from moments of the distribution of the gradient, f ′(x), which has a Gaussian

distribution with variance ε2. It is known that the Lyapunov exponent of this model,

λ = 〈|1 + f ′(x)|〉, is positive for ε > εc with the critical point at εc = 2.421 . . . [19].

The numerical illustrations shown in figures 4 and 5, were for the case ε = 1.5 εc, where

λ ≈ 0.302 and σ ≈ 1.107.
We examined the probability distribution of zmin, finding that it is of the form

(12)-(14), with M and σ replaced by effective values, Meff and σeff . We find σeff/σ ≈ 1,
and the difference is likely to be a consequence of the fact that J(Z) is only approximately

quadratic. However we find that Meff/M � 1. We interpret this as being a consequence of

the clustering of trajectories illustrated in figure 1. Because many of the trajectories are very

closely clustered together, the number of independent samples of the phase space is much less

than M . Figure 4 shows the probability distribution of zmin(N,M) for M = 103 trajectories

after N = 200 iterations. There is an excellent fit to the distribution (12)-(14), with σeff = 1.2σ

and Meff = 35.8.

We computed an ensemble average over different realisations of the random functions in

equation (17). The ensemble averaged results are shown in figure 5, which shows the mean

FTLE converging to λ = 0.302, and the average of zmin(N,M) over 103 realisations, for

M = 100 trajectories, compared to a fit of equation (3): there is excellent agreement with the

prediction that λ − 〈zmin〉 ∼ N−1/2. We also computed the variance of zmin(N,M), which is

asymptotic to a multiple of N−1. Using the mean and the variance we were able to determine

the two parameters σeff and Meff , obtaining Meff = 18.3 and σeff = 1.125σ. This allowed

us to fit the data to equations (15). We repeated this for different values of the number of

trajectories, namely M = 100, 103 and 104 trajectories, and we found fitted values of σeff/σ

equal to 1.125, 1.15 and 1.175 respectively. The fitted values of M were Meff = 18.3, 35.8 and



Convergent Chaos 12

50 100 150 200 250 300 350 400 450 500
−0.2

−0.1

0

0.1

0.2

0.3

0.4

N

 

 

100 × Var(zmin)

z̄
zmin

λ − f (M )√
N

N−1

Figure 5. Average of the minimum value of the finite-time Lyapunov exponent

over 103 realisations of the random functions in the correlated random walk model,

equations (16)-(17). The data are plotted as a function of the number of iterations, N ,

and compared with equation (3), where the used the fitting parameters Meff = 18.3

and σeff = 1.125σ in equations (15). We also show the variance of zmin, compared with

the fitted value.

75.5 respectively. This is consistent with another power-law relation,

Meff = µMΓ (18)

with Γ ≈ 0.30 for ε = 1.5εc.

6. Perpetually converging trajectories

In section 5 we emphasised the effects of the slow approach of zmin(N,M) towards λ in the long-

time limit, N →∞. For any given value of the number of iterations N (or altenatively, for any

time t), equation (3) indicates that zmin decreases as the number of trajectories M increases.

This raises the question as to what is the limit of zmin(N,M) as M →∞ for a fixed but large

value of N . There will be a global minimum z(N) after N iterations, which can be located by

taking a sufficiently large number of initial conditions. Because of the exponential sensitivity

of chaotic systems to their initial conditions, we expect that the number of trajectories, M,

required to accurately locate the global minimum of z is M ∼ KN , for some constant K. If

we replace M withM = KN in equation (9), we obtain an equation ln K = J(zmin), which is

independent of N . This suggests that the limit of z as M →∞ should approach a limit µ as

N →∞. This is not, however, a compelling argument because the derivation of (9) assumed

that we take M independent random samples of the distribution of z. If we increase M so

as to sample the entire phase-space, we cannot guarantee that the trajectories which yield

extreme values are independent of each other.

However, there are arguments based upon exactly solvable systems which support the

hypothesis that the global minimum of z after N iterations approaches a limit µ which

is independent of N and distinct from λ. Consider first a deterministic one-dimensional
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dynamical system for which it is obvious that µ < λ. This is the generalised tent map

xn+1 =

{
g1xx , 0 ≤ xn < g−1

1

g2(1− xn) , g−1
1 < xn ≤ 1

. (19)

The gradients of the linear sections, g1 and −g2 satisfy a harmonic mean value constraint:

g−1
1 + g−1

2 = 1. This is a piecewise linear map of the interval [0, 1] into itself. The Lyapunov

exponent is

λ =
g2 ln g1 + g1 ln g2

g1 + g2
. (20)

The N -fold composition of the map has 2N piecewise linear intervals. If g1 < g2, then the

interval with the smallest FTLE is the first interval, for which the instability factor is gN1 and

hence

µ = ln g1 (21)

so that µ < λ if g1 < g2. This elementary example shows that the minimal FTLE may converge

to a value which is different from the Lyapunov exponent. The value of µ must, however, be

positive for this map.

In order to see an example where µ may be negative while λ is positive, implying that

there is always at least one trajectory which is convergent for all times, we consider an

alternative dynamical system. This system has two variables, xN and yN , specifying the state

at every iteration. The variables yN are iterated according to a simple tent map, representing

a Bernoulli shift: yN+1 = 2yN mod 1. The iteration of the xN variable depends upon two

random independent identically distributed random variables, an,±:

xn+1 =

{
an,+ × xn , 0 < yn <

1
2

an,− × xn , 1
2 < yn < 1

. (22)

We draw the an,± independently from the same probability distribution. The initial condition

for the yN variables is y0 = x0. Consider the dynamics generated by this process as a map

x0 → xN . The map is piecewise linear on a set of intervals, which are determined by the

discontinuities of the process which generates the auxiliary variables yN . After N iterations

there are 2N such intervals. Within each interval, we have

xN =

 N∏
j=1

aj,±

x0 (23)

where the aj,± are the random variables selected at random at each iteration, either aj,+ or

aj,− depending upon the trajectory xj . These variables are chosen independently for each of

the 2N intervals. The FTLE for a given trajectory is, therefore,

z =
1

N

N∑
j=1

ln |aj,±| (24)

which is a mean value of a sum of random variables.

For the sake of definiteness, we make a simple and convenient choice for the statistics

of the variables aj,±. It is convenient to take the aj,± log-normally distributed, so that the

probability distribution function of y = ln a is P (y) = exp[−(y − λ)2/2σ2
y ]/
√

2πσy, where λ

and σy are two parameters. The variance of the sum is with respect to different choices of

signs, but a fixed realisation of the aj,±, is σ2
y/2, so that σ = σy/

√
2 in equations (3), and

(10)-(15). The ensemble average of the minimum value of z over all choices of signs is equal to
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Figure 6. The ensemble average of the mean and minimum Lyapunov exponent for

the map described by equations (22)-(24). Here σy = 0.5, λ = 0.1 and M = 215, so

that the ensemble average of the minimum of z is equal to µ up until N = 14. For large

N it approaches the asymptote given by equations (3) and (10)-(15), with σ replaced

by σy/
√

2. For this model, M is not replaced by an effective value.

the average of the smaller of aj,+ and aj,−, which is approximately −0.564σy. The ensemble

average of the minimum of z is expected to equal

µ ≈ λ− 0.564σy (25)

until 2N > M , at which point the trajectories do not explore phase space in sufficient detail to

identify the global minimum of z. These predictions were verified by a numerical experiment

(see figure 6).

7. Applications

7.1. Particle concentration in surface flows

We have used a one-dimensional model to illustrate our model, because it allows us to

represent the space-time structures of the trajectories in a two-dimensional image such as

Figure 1. There is, however, nothing in our discussion which is specific to one dimension, and

the three-dimensional version of our model (1) is frequently used to describe the motion of

particles in complex flows. It is already known that turbulent flows can induce fractal particle

clustering[23], although the effect is weaker than that illustrated in figure 1, because the

underlying fluid flow is incompressible [24] (whereas our one-dimensional model, of necessity,

involves a compressible flow). Clustering effects are believed to play a role in the production

of raindrops in clouds [25, 26] (note however that other effects may be crucial to these

processes [27, 28]).

The very strong convergence property, exhibited in Figure 1 is reminiscent of the

clustering of particles floating on the surface of a turbulent water tank [29]. We remark

that particles floating on the surface of a turbulent fluid experience a compressible and

apparently random flow field. Experiments indicate that the correlation function of the

particle distribution is C(∆r) ∼ ∆r−0.92±0.02 [29], implying that the particles cluster with
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a correlation dimension D2 ≈ 0.08 [18]. The fact that this dimension is just slightly greater

than zero indicates that that surface flows are very close to a critical point at which trajectories

coalescence onto a point set, as described in [14]. We modelled a surface flow by the equations

of motion

ẋ = u(x, y, t),

u = ∇ ∧ ψ + α∇φ, (26)

where ψ(x, y, t) and φ(x, y, t) are two independent, isotropic, homogeneous scalar fields with

a short correlation time, and α is an adjustable parameter. In this case it is known that

D2 = 2(1 − α2)/(1 + 3α2) [30], so that we can model the flow by taking α = 0.926. Figure 7

shows a simulation of this model for floating particles, where the particles become concentrated

along lines of convergence associated with sinking fluid. Figure 7 is very reminiscent of

experimental images [29], validating the use of this model.

Figure 7. Simulation of the distribution of particles floating over a complex two-

dimensional flow. (Equation (26) with α = 0.926.)

The investigation of (26) in two spatial dimensions reveals extreme convergence effects

similar to those observed with the one-dimensional model (1). This is illustrated by Figure

7, which shows the positions of 106 particles, which were originally evenly distributed in 106

pixels. In Figure 7, one of the pixels has accumulated nearly 3 × 104 particles. We have

therefore provided evidence that, because surface flows are close to a critical point, they

exhibit a pronounced form of the convergence phenomena displayed in Figure 1. We note that

a similar behavior has been reported in the transport of particles by a purely deterministic

model flow, displaying spatio-temporal chaos [31, 32].

We propose that these effects, which combine strong convergence with mixing behaviour,

may have played a role in the evolution of primitive living organisms. Early organisms would

have lacked the mobility required to follow concentration gradients to find nutrients, to explore
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different environments, or to encounter other individuals which might have advantageous

mutations. A process such as that illustrated in Figure 7, which combines mixing and

converging behaviours, seems to offer advantages to primitive organisms. This supports the

hypothesis that the first living organisms would have evolved in the surface layers of water,

and that motion of the water could act as a catalyst for evolutionary development. Similar

ideas could also be important in the related problem of population dynamics in a turbulent

environment [33].

7.2. Financial risks

The arguments that we have presented are quite general, indicating that the convergent chaos

phenomenon, involving transient convergence of chaotic trajectories may find applications in

very different domains. Insurance or futures transactions, where one takes a fee in exchange for

writing a contract which requires a payment to be made if there is a loss or an unfavourable

change in the price, may be an area ripe for the concept of convergent chaos. Substantial

academic fields have developed around determining the value of these contracts. In insurance,

actuarial methods are used [34], and in finance, models based upon diffusive fluctuations of

asset prices are the underlying tool [35]. Any information about the nature of risk can be used

to gain advantage. Our investigation shows that some chaotic systems, which would usually be

assumed to be unpredictable, could be in fact highly predictable for certain initial conditions.

In cases, such as weather related risks, where deterministic but chaotic equations of motion

are available, it may be possible to identify initial conditions for which the uncertainty is much

smaller than expected, so that the risk in a futures contract would be reduced.

8. Discussion

Our results have shown that a simple chaotic dynamical system which describes the motion of

particles in a turbulent flow can show an extremely high degree of convergence, despite the fact

that the trajectories must eventually diverge with a positive rate of exponential growth. Using

large-deviation and extreme-value concepts, we have shown that this transient convergence

may be very long-lived, intense and widespread (as illustrated by our studies of the finite-time

Lyapunov exponent), and that it exhibits several scale-free geometrical properties, revealed

by exhibiting power-law distributions. The convergent chaos effect is expected to be observed

in many systems, and we expect that it will be utilised for optimising the price of futures

contracts. The model that we investigated in some depth, namely motion of particles in a

turbulent flow, shows particularly marked convergence in the case of particles on the surface

of a two-dimensional flow, and we argued that the combination of mixing and converging

effects may have facilitated evolution of primitive organisms.

The phenomena described here have broad implications for the interpretation of chaos,

specifically of the ‘butterfly effect’. Are perturbations destined to alter the course of large-scale

patterns in turbulent systems? Or could regions of the phase space of a chaotic dynamical

system be screened off from small perturbations? Our work clearly provides a positive answer

to the latter question, thus bringing new insight on the Lorenz’ Brazilian butterfly problem. For

these reasons the converging divergence phenomenon is likely to lead to a deeper understanding

of chaotic dynamics and of its applications, and as such, deserves systematic investigation.
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