91 research outputs found

    Observation and assessment of model retrievals of surface exchange components over a row canopy using directional thermal data

    Get PDF
    Land surface temperature is an essential climate variable that can serve as a proxy for detecting water deficiencies in croplands and wooded areas. Its measurement can however be influenced by anisotropic properties of surface targets leading to occurrence of directional effects on the signal. This may lead to an incorrect interpretation of thermal measurements. In this study, we perform model assessments and check the influence of thermal radiation directionality using data over a vineyard. To derive the overall directional surface temperatures, elemental values measured by individual cameras were aggregated according to the respective cover fractions/weights in viewing direction. Aggregated temperatures from the turbid model were compared to corresponding temperatures simulated by the 3D DART radiative transfer model. The reconstructed temperatures were then used in surface-energy-balance (SEB) simulations to assess the impact of the Sun-target-sensor geometry on retrievals. Here, the pseudo-isotropic Soil-Plant-Atmosphere-Remote-Sensing-of-Evapotranspiration (SPARSE) dual-source model together with the non-isotropic version (SPARSE4), were used. Both schemes were able to retrieve overall fluxes satisfactorily, confirming a previous study. However, the sensitivity (of flux and component temperature estimates) of the schemes to viewing direction was tested for the first time using reconstructed sets of directional thermal data to force the models. Degradation (relative to nadir) in flux retrieval cross-row was observed, with better consistency along rows. Overall, it was nevertheless shown that SPARSE4 is less influenced by the viewing direction of the temperature than SPARSE, particularly for strongly off-nadir viewing. Some directional/asymmetrical artefacts are however not well reproduced by the simple Radiative Transfer Methods (RTM), which can then manifest in and influence the subsequent thermal-infrared-driven SEB modelling.This work was supported by the ALTOS project (PRIMA 2018 - Section 2), with grants provided by ANR via the agreement n°ANR-18-PRIM-0011-02 as well as the CNES/TOSCA program for the TRISHNA project. First author acknowledges the financial support of his PhD from CNES and Région Occitanie. The field experiments were carried out in the context of the HiLiaise and ESA WineEO projects. Joan Boldu (proprietor) and David Tous (SafSampling) are also acknowledged for allowing/providing access to the site and other site related data. Nicolas Lauret’s help with preparation of the DART mock-ups is appreciated.info:eu-repo/semantics/publishedVersio

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    Remote Sensing Studies of Urban Canopies: 3D Radiative Transfer Modeling

    Get PDF
    Need for better understanding and more accurate estimation of radiative fluxes in urban environments, specifically urban surface albedo and exitance, motivates development of new remote sensing and three‐dimensional (3D) radiative transfer (RT) modeling methods. The discrete anisotropic radiative transfer (DART) model, one of the most comprehensive physically based 3D models simulating Earth/atmosphere radiation interactions, was used in combination with satellite data (e.g., Landsat‐8 observations) to better parameterize the radiative budget components of cities, such as Basel in Switzerland. After presenting DART and its recent RT modeling functions, we present a methodological concept for estimating urban fluxes using any satellite image data

    Urban energy exchanges monitoring from space

    Get PDF
    One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. However, satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation); and also underestimate anthropogenic heat flux. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling

    Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes

    Get PDF
    International audienceSatellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc.) and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc.) are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART) model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR) waveform and photon counting signals

    The Laegeren site: an augmented forest laboratory combining 3-D reconstruction and radiative transfer models for trait-based assessment of functional diversity

    Full text link
    Given the increased pressure on forests and their diversity in the context of global change, new ways of monitoring diversity are needed. Remote sensing has the potential to inform essential biodiversity variables on the global scale, but validation of data and products, particularly in remote areas, is difficult. We show how radiative transfer (RT) models, parameterized with a detailed 3-D forest reconstruction based on laser scanning, can be used to upscale leaf-level information to canopy scale. The simulation approach is compared with actual remote sensing data, showing very good agreement in both the spectral and spatial domains. In addition, we compute a set of physiological and morphological traits from airborne imaging spectroscopy and laser scanning data and show how these traits can be used to estimate the functional richness of a forest at regional scale. The presented RT modeling framework has the potential to prototype and validate future spaceborne observation concepts aimed at informing variables of biodiversity, while the trait-based mapping of diversity could augment in situ networks of diversity, providing effective spatiotemporal gap filling for a comprehensive assessment of changes to diversity

    Accuracy of five algorithms to diagnose gambiense human African trypanosomiasis.

    Get PDF
    Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given

    The Chikungunya Epidemic on La Réunion Island in 2005–2006: A Cost-of-Illness Study

    Get PDF
    For a long time, studies of chikungunya virus infection have been neglected, but since its resurgence in the south-western Indian Ocean and on La Réunion Island, this disease has been paid greater amounts of attention. The economic and social impacts of chikungunya epidemics are poorly documented, including in developed countries. This study estimated the cost-of-illness associated with the 2005–2006 chikungunya epidemics on La Réunion Island, a French overseas department with an economy and health care system of a developed country. “Cost-of-illness” studies measure the amount that would have been saved in the absence of a disease. We found that the epidemic incurred substantial medical expenses estimated at €43.9 million, of which 60% were attributable to direct medical costs related, in particular, to expenditure on medical consultations (47%), hospitalization (32%) and drugs (19%). The costs related to care in ambulatory and hospitalized cases were €90 and €2000 per case, respectively. This study provides the basic inputs for conducting cost-effectiveness and cost-benefit evaluations of chikungunya prevention strategies
    corecore