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Abstract 

Urban geometry and materials combine to create complex spatial, temporal and directional patterns of longwave infrared 

(LWIR) radiation. Effective anisotropy (or directional variability) of thermal radiance causes remote sensing (RS) derived 

urban surface temperatures to vary with RS view angles. Here a new and novel method to resolve effective thermal 

anisotropy processes from LWIR camera observations is demonstrated at the Comprehensive Outdoor Scale MOdel 

(COSMO) test site. Pixel-level differences of brightness temperatures reach 18.4 K within one hour of a 24-h study period. 

To understand this variability, the orientation and shadowing of surfaces is explored using the Discrete Anisotropic 

Radiative Transfer (DART) model and Blender three-dimensional (3D) rendering software. Observed pixels and the entire 

canopy surface are classified in terms of surface orientation and illumination. To assess the variability of exitant longwave 

radiation (𝑀𝐿𝑊) from the 3D COSMO surface (𝑀𝐿𝑊
3𝐷 ), the observations are prescribed based on class. The parameterisation 

is tested by simulating thermal images using a camera view model to determine camera perspectives of 𝑀𝐿𝑊
3𝐷  fluxes. The 

mean brightness temperature differences per image (simulated and observed) are within 0.65 K throughout a 24-h period. 

Pixel-level comparisons are possible with the high spatial resolution of 𝑀𝐿𝑊
3𝐷  and DART camera view simulations. At this 

spatial scale (< 0.10 m), shadow hysteresis, surface sky view factor and building edge effects are not completely resolved 

by 𝑀𝐿𝑊
3𝐷 .  By simulating apparent brightness temperatures from multiple view directions, effective thermal anisotropy of 

𝑀𝐿𝑊
3𝐷  is shown to be up to 6.18 K. The developed methods can be extended to resolve some of the identified sources of 

sub-facet variability in realistic urban settings. The extension of DART to the interpretation of ground-based RS is shown 

to be promising. 

List of symbols and acronyms [units] 
β, ϕ, ω Euler angles describing a sequence of rotations within the (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) coordinate frame 

BOA Bottom of atmosphere 

BRF Bidirectional reflectance factor 

C Non-specific camera 

COSMO COmprehensive urban Scale MOdel 

𝑑𝐹𝑃𝐴 Camera focal plane array size [mm] 

DART Discrete Anisotropic Radiative Transfer model (Gastellu-Etchegorry et al., 2012) 

DSM Digital surface model 

ε Emissivity 

𝐸𝐿𝑊
↓  Broadband longwave radiation flux (irradiance) downward from sky [W m-2] 

𝐸𝑆𝑊
↓  Broadband shortwave radiation flux (irradiance) downward from sky [W m-2] 

𝐸𝑆𝑊,𝑑𝑖𝑟
↓  Broadband direct shortwave radiation flux (irradiance) downward from sky [W m-2] 

𝐹 Camera focal length [mm] 

𝑓 Fraction 

FOV Field of view 

FPA Focal plane array 

𝑖 Nonspecific surface class 

IFOV Instantaneous field of view 

IP Image plane 

𝜆 Wavelength [μm]  

LW Longwave 

LWIR Longwave infrared 

𝑀𝐿𝑊 Broadband longwave radiation flux (exitance) from a surface [W m-2] 

𝑀𝐿𝑊
3𝐷  Broadband longwave radiation flux (exitance) from discrete points of an urban surface, resolved in 3D [W 

m-2] 

𝑀𝐿𝑊
𝑐𝑎𝑚 Camera derived broadband longwave radiation flux (exitance) [W m-2] 

𝑀𝐿𝑊
𝑐𝑎𝑛 Non-specific broadband longwave radiation flux (exitance) from urban canopy elements [W m-2] 
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𝑀𝐿𝑊
↑  Broadband longwave radiation flux (exitance) upward from ground [W m-2] 

𝑀𝐿𝑊
𝑅𝑆  Nonspecific (e.g. satellite) remote sensing derived broadband longwave radiation flux (exitance) [W m-2] 

𝑀𝑆𝑊
↑  Broadband upwelling shortwave radiation flux (exitance) upward from ground [W m-2] 

𝑀𝑆𝑊 Shortwave radiant flux (exitance) from a MW surface element [W m-2] 

MW Model world 

𝑂 Origin of model world domain coordinate frame  

𝑂𝑐 Origin of camera intrinsic coordinate frame  

𝑃 Camera principle point 

ϕ   Zenith angle 

𝛹sky Sky view factor 

𝛹can Canopy view factor 

R Camera rotation parameters 

RGB Red, green, blue 

RW Real world 

𝑠 Camera pixel scaling factor 

𝑆 Triangle face of vector model 

SW Shortwave 

t Camera translation parameters 

𝜏 Transmissivity 

𝑇𝑏 Brightness temperature [K] 

𝑇𝑏
𝑐𝑎𝑚 Camera derived brightness temperature [K] 

TOA Top of atmosphere 

𝑇𝑠 Thermodynamic surface temperature [K] 

𝑇𝑠
3𝐷 Thermodynamic surface temperature at discrete points of an urban surface, resolved in 3D [K] 

𝑉𝑥 Voxel (a volume element) 

𝑉𝑥𝑆 Voxel intersected by a digital surface model element (surface voxel) 

𝑋, 𝑌, 𝑍 Model world domain coordinate frame 

𝑥, 𝑦 Camera pixel coordinate frame 

𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 Camera intrinsic coordinate frame 

𝑧𝑐  Camera principle axis 

1. Introduction 

Urban surface temperature (𝑇𝑠) plays a significant role in the urban surface energy balance as it is central to longwave 

radiation (LW), turbulent sensible heat and storage heat fluxes. Remote sensing (RS) methods have the potential to provide 

𝑇𝑠 at large spatial scales for understanding exchanges of sensible heat (e.g. Voogt and Grimmond, 2000; Xu et al., 2008), 

the thermal comfort of city dwellers (Thorsson et al., 2004), and the urban surface heat island phenomenon (Huang et al., 

2016; Kato and Yamaguchi, 2005; Roth et al., 1989). Two major challenges of urban thermal RS observations relate to the 

complex three-dimensional (3D) urban surface form and material heterogeneity, both causing large spatiotemporal 

variability of 𝑇𝑠 (Voogt and Oke, 2003). Spatiotemporal variability of 𝑇𝑠 is influenced by the relative orientation of 

surfaces to the sun during the day, and sky at night (Voogt and Oke, 2003). The diversity of thermal and radiative 

properties of surface materials causes additional variability (Voogt, 2008). What results is a directional variability, or an 

effective thermal anisotropy (Krayenhoff and Voogt, 2016), of broadband longwave radiation (𝑀𝐿𝑊, W m-2) from the urban 

canopy surface. The anisotropic behavior of urban canopies is defined as ‘effective’ to differentiate from thermal 

anisotropy exhibited by individual surface components (Voogt and Oke, 1998). Effective thermal anisotropy clearly affects 

satellite measured radiance, which is indicative of satellite derived longwave radiation (𝑀𝐿𝑊
𝑅𝑆 . As a result, the apparent 𝑇𝑠 

can vary depending on view direction. 𝑀𝐿𝑊
𝑅𝑆  can be described by: 

𝑀𝐿𝑊
𝑅𝑆 =∑𝑀𝐿𝑊,𝑖  𝑓𝑖

𝑛

𝑖

 
(1) 

where 𝑀𝐿𝑊,𝑖 is the exitant broadband longwave radiation from a given canopy surface element 𝑖 that comprises fraction 𝑓 

of the instrument field of view (FOV). Out of the total number of canopy surface elements 𝑛, 𝑀𝐿𝑊,𝑖 may be unique due to 

the highly variable radiative properties associated with its surface temperature, emissivity (ε) and contributions from 

longwave reflections. 𝑀𝐿𝑊
𝑅𝑆  is also sensitive to urban canopy geometry and to the specific view angle within each image 

swath. These factors combine to form a view angle specific 𝑓𝑖 which translates to a view angle specific value of 𝑀𝐿𝑊
𝑅𝑆 . For 

example, 𝑓𝑖 for roof and tree tops is generally overemphasised within 𝑀𝐿𝑊
𝑅𝑆  for urban areas (Roth et al., 1989). Corrections 

of effective thermal anisotropy are critical when retrieving high-quality 𝑇𝑠 products for urban environments at large spatial 

scales from satellite-derived 𝑀𝐿𝑊
𝑅𝑆 . 

 

The impact of effective thermal anisotropy on 𝑀𝐿𝑊
𝑅𝑆  has been studied using various observation and modelling techniques. 

Observations from airborne platforms (e.g. Lagouarde et al., 2004; Sugawara and Takamura, 2006; Voogt and Oke, 1998) 

allow highly variable view angles at scales representative of satellite pixel resolutions (100 m – 1 km). However, cost and 

air traffic restrictions usually limit these to short-term research campaigns. As obtaining different view angles requires 

multiple flyovers (i.e. difficult to conduct simultaneously), sequential flyovers with one aircraft may temporally confound 

results. Thus, the directional variability of 𝑀𝐿𝑊
𝑅𝑆  at a micrometeorological timeframe (sub-hourly) for energy exchange 
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processes (Christen et al., 2012) may be unresolved. Ground-based RS observations are interesting in that 𝑀𝐿𝑊 can be 

resolved at high temporal resolutions (e.g. Christen et al., 2012) while resolving the individual facet (e.g. roof, wall) and 

sub-facet scale classes of 𝑀𝐿𝑊,𝑖 that constitute the structural and radiative characteristics of the urban canopy. For ground-

based RS, a challenge is to sample enough facets representative of the complete 3D urban canopy at any one time. A single 

ground-based measurement provides a highly directional sample at high spatial resolution. Several ground-based sensors 

are required to sample facets of all orientations, unless a single ground-based sensor is operated on a rotating (e.g. 

Adderley et al., 2015) or mobile (e.g. Voogt and Oke, 1997) platform. As satellite-based RS is also inherently biased by 

FOV, it is important to be able to understand the nature of this bias.  

Modelling can further help resolve the contribution of sub-facet scale variability of 𝑀𝐿𝑊 on effective thermal anisotropy. 

The nature of effective thermal anisotropy and 𝑀𝐿𝑊
𝑅𝑆  can be understood under constrained conditions at high temporal and 

spatial resolutions. Therefore, modelling is considered key to progress (Voogt, 2008; Voogt and Oke, 2003). Approaches 

typically involve a parameterisation of surface geometry, an energy balance model prescription of surface temperature and 

sensor view modelling of 𝑀𝐿𝑊
𝑅𝑆  to resolve 𝑀𝐿𝑊,𝑖 and 𝑓𝑖 (eqn. 1) for a given surface-sensor viewing geometry. Surface 

temperatures can be prescribed from 2D (Kusaka et al., 2001; Sugawara and Takamura, 2006; Voogt, 2008), 2.5D infinite 

street canyon (e.g. Lagouarde et al., 2010) and 3D (Krayenhoff and Voogt, 2007, 2016; Soux et al., 2004) energy balance 

simulations to estimate 𝑀𝐿𝑊,𝑖 (eqn. 1) at facet (e.g. surface orientation, roof, ground) or sub-facet (e.g. insolation, material) 

scales.  

Few sensor-view modelling studies exist that prescribe 𝑀𝐿𝑊,𝑖 from observations at facet and sub-facet scale, despite this 

complementing and constraining energy balance simulations. Classifying surfaces within ground-based RS source areas 

poses challenges because of the potentially diverse viewing geometries, complex 3D urban canopy structure, and low 

resolution of longwave infrared (LWIR) camera imagery. Previously, the spatial frequency distributions of 𝑀𝐿𝑊 

determined by ground-based LWIR imagery were used to infer canopy surface classes (e.g. Voogt and Grimmond, 2000) or 

surface classes were manually identified and extracted (e.g. Voogt, 2008). Manual approaches based on broadband thermal 

imagery are limited when the temperature contrast between facets is low (because of orientation or material properties). 

Information at multiple wavelengths can be valuable to improve classification. With maturing of sensor view modelling, it 

is becoming a powerful tool to objectively classify surface elements captured by RS imagery. Previous studies interpreting 

ground-based LWIR imagery have determined per-pixel path lengths for atmospheric correction of observations from on 

top of a high-rise building in Berlin (Meier et al., 2011). The SUM surface-sensor-sun model (Soux et al., 2004) enables 

sensor view modelling of 𝑀𝐿𝑊,𝑖 prescribed from observations, limited to urban surface geometry resolved as regular arrays 

of rectangular shaped buildings. Studies using SUM have prescribed temperatures intermittently (e.g. Voogt, 2008) from 

ground-based and airborne platforms observations. 3D rendering and editing software and a 3D vector model have 

facilitated the classification of ground-based LWIR imagery in a suburban area in Vancouver (Adderley et al., 2015). Here, 

classified temperature ‘textures’ were gap-filled to enable extrapolation across the 3D vector model as a complete 

brightness temperature product for sensor view modelling of hemispherical radiometer measurements using a single LWIR 

camera on a rotating mast.  

In the current study, a flexible observational and modelling approach is developed to prescribe 𝑀𝐿𝑊 from broadband 

longwave radiation fluxes derived from static ground-based LWIR camera observations. A 3D distribution of exitant 

broadband longwave radiation (𝑀𝐿𝑊
3𝐷 , W m-2) is constructed from observations. The approach involves a novel method to 

classify each camera image. Pixels within each image are associated with a specific surface class prior to observations 

being extrapolated to all urban canopy surface elements in 3D. A ‘model world’ (MW) is used to process and interpret 

observations which enables ‘real world’ (RW) surfaces to be related to each camera image by camera view modelling. It 

provides a robust and quantitative method to interpret observations. Surface class 𝑖 is determined in 3D space [i.e. 

𝑖(𝑋, 𝑌, 𝑍)] and is then accurately mapped to the 2D (𝑥, 𝑦) coordinates of a camera image plane (IP) [i.e. 𝑖(𝑥, 𝑦)].  

Unique here is the camera view modelling used to interpret observations, as surface classes are determined at high 

temporal and spatial resolution using surface geometry and shortwave (SW) radiative characteristics for each time step. 

This is designed to ensure all canopy surfaces are always accounted for when extrapolating observations over the 3D urban 

surface. A potential constraint of highly directional ground-based measurements is turned to an advantage by positioning 

two cameras at opposing view angles. This permits a combined observational source area representative of all surface 

classes that constitute the 3D urban surface. Extrapolated observations are compared with original camera imagery. This is 

done by projecting the extrapolated observations through the perspective of simulated cameras, with modelled perspectives 

matching those seen by the original camera imagery. This approach is unique in that the modelled perspectives are shown 

to reproduce the perspectives of the original imagery at pixel level and to a high degree of accuracy. Extrapolated 

observations have potential as a tool for further sensor view modelling to explore the impact of effective thermal 

anisotropy on directionally variable 𝑀𝐿𝑊
𝑅𝑆  products for any given surface-sensor configuration. 

The observational setup (Section 2.1, Section 2.2), the classification methods (Section 2.3, Section 2.4) and extrapolation 

(Section 3) of observations are introduced. Results (Section 4) include evaluation of proposed methods and demonstrate 

their benefits for application in urban RS. It is concluded (Section 5) that the detailed modelling approach provides a 

valuable tool for future studies in real city settings. 
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2. Methods 

LWIR camera observations are interpreted and estimated as 𝑀𝐿𝑊
3𝐷  in a MW environment (Figure 1). Two LWIR cameras 

(Section 2.2) were installed on ground-based platforms above an urban test site (treated here as the RW, Section 2.1) to 

capture spatial and temporal variability of 𝑀𝐿𝑊 that is representative of 𝑀𝐿𝑊
3𝐷 . The MW surface geometry (Section 2.3) and 

camera view (Section 2.4) components enable extrapolation of RW observations to 𝑀𝐿𝑊
3𝐷  (Section 3).  

 

Figure 1. Flow chart of procedures to estimate and evaluate 

exitant broadband longwave radiation prescribed across an 

urban canopy (𝑀𝐿𝑊
3𝐷 ) using ground based longwave infrared 

(LWIR) imagery coupled with camera view and 3D modelling 

techniques. See list of symbols and acronyms for all other 

definitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2.1. Real world site 

The COSMO site (Kanda et al., 2007) is an outdoor scale model of an urban canopy. It occupies an area of 100 m x 50 m 

(Figure 2) at the Nippon Institute of Technology, Saitama prefecture, Japan (South East corner: 36° 1' 36.42" N, 139° 42' 

18.45" E). The simple repeating geometry consists of 1.5 m cubic concrete blocks (with 0.1 m thick walls) with an even 

1.5 m spacing (Figure 2d). The long axis for the 32 x 16 blocks is oriented 49o west of true North (Figure 2a). For 

simplicity, the ‘building’ walls are referred to hereafter by their nearest cardinal direction relative to COSMO long axis 

orientation: S (229°), E (139°), N (49°), and W (319°). Obviously, this deviation from the true cardinal directions impacts 

shading patterns and related surface warming effects. All surfaces are made of the same concrete, painted grey (albedo = 

0.1, 𝜀7−13𝜇𝑚= 0.89; Kawai et al. 2007). Surface weathering effects (Figure 2c) are likely to affect the radiative 

characteristics, but the apparently random patterns are too small a spatial scale to be accounted for in this study. 

2.2 Real world Instrumentation 

Two Optris PI160 LWIR cameras (Optris GmbH, Germany) were installed on an aluminium lattice tower at 6.8 m and 7.0 

m above ground level (Figure 2d) at opposing azimuth angles with oblique views of ground, roof and all cardinal facing 

surfaces. Cameras are defined as (Cnorth, Csouth) based on their azimuthal view angle (Figure 2b). The horizontal and 

vertical pixel resolution of the cameras ranges from approximately 0.030 m x 0.043 m to 0.079 m x 0.111 m. The small, 

lightweight industrial grade cameras use uncooled microbolometer technology, with 25 μm x 25 μm bolometer elements 

arranged as a 160 x 120 focal plane array (FPA). With multiple cameras, multiple view angles (e.g. Figure 2b) can be 

sampled simultaneously in a static setup (cf., rotating one sensor, Adderley et al., 2015; or vehicle traverses, Voogt and 

Oke, 1997). The instrument outputs digital number values for each microbolometer pixel. These values relate to at-sensor 

broadband 7 – 13 μm radiance and are radiometrically calibrated by the manufacturer to brightness temperatures 

[𝑇𝑏
𝑐𝑎𝑚(𝑥, 𝑦)] using black body reference measurements. The per-pixel broadband longwave radiation flux [𝑀𝐿𝑊

𝑐𝑎𝑚(𝑥, 𝑦)] is 

related to 𝑇𝑏
𝑐𝑎𝑚(𝑥, 𝑦) by Stefan-Boltzmann law: 

𝑀𝐿𝑊
𝑐𝑎𝑚(𝑥, 𝑦) = 𝜎𝑇𝑏

𝑐𝑎𝑚(𝑥, 𝑦)4         (2) 

with 𝜎 the Stefan-Boltzmann constant (5.67 x 10-8 W m-2 K-4). The temperature resolution is 0.1 K and the manufacturer’s 

specified accuracy is 2 oC at ambient temperatures 23 ±5 oC (Optris GmbH, Germany). Although images can be captured 
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at 120 Hz, for this study images recorded every 60 s are used to reduce data overhead but capture temporal variability of 

𝑀𝐿𝑊
𝑐𝑎𝑚 caused by transient surface shadowing. The manufacturer specified camera horizontal and vertical FOV is 41° x 31°.  

Observations were taken between 2014/06/16 and 2014/09/26. In this paper, the focus is on a predominantly clear-sky day 

(2014/08/02). Both cameras were connected to the same field laptop for data acquisition via USB using the Optris PI 

connect software. 

 

Figure 2. COSMO test site and longwave infrared (LWIR) camera observational setup: (a) test site domain (plan view) with focus area 

(green box); (b) focus area with LWIR camera (𝐶𝑠𝑜𝑢𝑡ℎ, 𝐶𝑛𝑜𝑟𝑡ℎ) locations and approximate orientations (blue) and source areas 

(red) for camera field of view; (c) north-west facing oblique visible image taken near the 𝐶𝑛𝑜𝑟𝑡ℎ camera location and perspective 

(d) vertical cross section of building array (grey squares) showing instrument tower and camera geometry. 

Multiple internal processing steps need to be considered to achieve radiometrically calibrated measurements from LWIR 

cameras. Uncooled microbolometer calibration and measurement processes are reviewed by Budzier and Gerlach (2015). 

Here the quality control steps undertaken are presented. 

After a camera is sited, the FPA requires a “warm up” period to allow the current induced self-heating of the sensor 

elements to stabilise (Vollmer and Möllmann, 2010) prior to measurements. As laboratory testing found up to 2 h warm up 

period is required depending on target and camera body temperature conditions (cf. manufacturer’s recommended 10 

mins), data prior to this are excluded. To correct for changes in the contribution of interior radiance incident on the FPA 

due to any change in the camera body temperature resulting from ambient air temperature variability, a shutter inside the 

camera with assumed black body characteristics and of known temperature obscures the sensor before every measurement 

so that its emission is sampled. The cameras are fitted with aluminum covers (enclosure: 945 mm x 45 mm x 62 mm). 

These are designed to prevent lens exposure to precipitation and any rapid, directional heating of the sensor body due to 

direct sun exposure. 

2.3 Model world site 

To interpret 𝑀𝐿𝑊
𝑐𝑎𝑚 for subsequent parameterisation and evaluation of 𝑀𝐿𝑊

3𝐷 , a MW is used. It has realistic surface-sensor 

geometry and processes contributing to variability in 𝑀𝐿𝑊 exitant across the RW (COSMO) site. For a given RW point at 

3D coordinates (𝑋, 𝑌, 𝑍), the RW radiative processes that determine 𝑀𝐿𝑊 from the canopy surface [𝑀𝐿𝑊
3𝐷 (𝑋, 𝑌, 𝑍)] are 
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approximated by assuming Lambertian facets, first order scattering, isotropic sky thermal radiance, invariance of 

emissivity across a broadband of thermal wavelengths and invariance of emissivity with facet kinematic temperature, viz: 

𝑀𝐿𝑊
3𝐷 (𝑋, 𝑌, 𝑍) = 𝜎𝑇𝑏

3𝐷4(𝑋, 𝑌, 𝑍) = [1 − ε(𝑋, 𝑌, 𝑍)] ⋅ 𝛹𝑠𝑘𝑦(𝑋, 𝑌, 𝑍) ⋅ 𝐸𝐿𝑊
↓     

+ [1 − ε(𝑋, 𝑌, 𝑍)] ⋅ 𝛹𝑐𝑎𝑛(𝑋, 𝑌, 𝑍) ⋅ 𝑀𝐿𝑊
𝑐𝑎𝑛 

+ 𝜀(𝑋, 𝑌, 𝑍) ⋅ 𝜎𝑇𝑠
3𝐷4(𝑋, 𝑌, 𝑍).       (3) 

where 𝛹𝑠𝑘𝑦 and 𝛹𝑐𝑎𝑛 are sky and canopy view factors (Johnson and Watson, 1984) that influence the radiant flux incident 

on RW point (𝑋, 𝑌, 𝑍); 𝐸𝐿𝑊
↓  is broadband longwave irradiance from sky;  𝑀𝐿𝑊

𝑐𝑎𝑛 is broadband longwave radiation emitted 

from surrounding canopy elements; 𝑇𝑏
3𝐷(𝑋, 𝑌, 𝑍) and 𝑇𝑠

3𝐷(𝑋, 𝑌, 𝑍) are the surface brightness and kinematic temperatures 

for the given point; and ε(𝑋, 𝑌, 𝑍) the broadband surface emissivity for the given point. The COSMO test site (Figure 2) 

and observational period chosen enables eqn. 3 to be simplified: 1) the homogeneous surface material allows ε(𝑋, 𝑌, 𝑍) to 

be treated as constant and isotropic, and 2) the high material emissivity reduces any variability in reflection contributions 

from 𝐸𝐿𝑊
↓  and 𝑀𝐿𝑊

𝑐𝑎𝑛. 𝐸𝐿𝑊
↓  is assumed isotropic in eqn. 3 as a simplification due to clear-sky conditions for the study date. 

The remaining factors determining COSMO 𝑀𝐿𝑊
3𝐷 (𝑋, 𝑌, 𝑍) in eqn. 3 (𝑇𝑠

3𝐷 , 𝛹𝑠𝑘𝑦 and 𝛹𝑐𝑎𝑛) are highly variable across the 

site. To parameterise the variability of 𝑀𝐿𝑊
3𝐷  in this paper, facets are classified by their orientation using Blender (Blender 

Foundation, 2016) and sub-facet insolation status (or shadow patterns) using the DART 3D radiative transfer model 

(Gastellu-Etchegorry et al., 2012) (Figure 1). Combining Blender (version 2.78) and DART (version 5.6.6, build v935) 

allows the 3D distribution of specific surfaces classes [𝑖(𝑋, 𝑌, 𝑍)] to be determined across the site. 𝑖(𝑋, 𝑌, 𝑍) is prescribed 

with similarly classified observations to formulate 𝑀𝐿𝑊
3𝐷 . 

Two spatial reference systems defined in the MW by DART and Blender facilitate the creation of 𝑖(𝑋, 𝑌, 𝑍): 
1) In both DART and Blender, the RW surface geometry is represented by a vector-based digital surface model (DSM) 

of triangles in a 3D mesh. This resolves surface geometry at a high level of detail (Gastellu-Etchegorry, 2008) which 

is not limited to simple geometry (e.g. Soux et al., 2004). A triangle face (𝑆) is the planar area between three vertices 

each with 𝑋, 𝑌, 𝑍 coordinates (Figure 3) with attribute 𝑆𝑖 a determinable facet-scale surface class. 

2) In DART, the MW is discretised into voxels 𝑉𝑥 of uniform size in a 3D raster format (see Figure 3; Δ𝑋, Δ𝑌, Δ𝑍; Yin 

et al., 2015). Surface voxels contain surface elements of the DSM 𝑉𝑥𝑆 (Figure 3), whereas other voxels only contain 

atmosphere. Voxels enable radiative transfer processes to be calculated within DART at high (sub-facet scale; < 𝑆) 

resolution. Surface voxels (Figure 3) are used to track radiation emitted and intercepted by 𝑆 (Gastellu-Etchegorry, 

2008), meaning MW geometry is resolved by the DSM during simulation. The prescribed surface temperature (𝑉𝑥𝑇𝑠
𝑆 ) 

and sub-facet-scale surface class information [𝑖(𝑋, 𝑌, 𝑍)] are stored by surface voxels. Therefore, a surface voxel that 

occupies an area Δ𝑋, Δ𝑌, Δ𝑍 of the DSM stores surface class 𝑉𝑥𝑖
𝑆(Δ𝑋, Δ𝑌, Δ𝑍) and temperature 𝑉𝑥𝑇𝑠

𝑆 (Δ𝑋, Δ𝑌, Δ𝑍) 

data. Simulated sources of emitted radiation can be from any combination of sun, upper atmosphere, 𝑉𝑥𝑆 and 

atmosphere voxels. Here, sun angle and insolation are modelled by DART to determine 𝑉𝑥𝑖
𝑆(Δ𝑋, Δ𝑌, Δ𝑍) for sunlit 

[𝑉𝑥𝑠𝑢𝑛𝑙𝑖𝑡
𝑆 (Δ𝑋, Δ𝑌, Δ𝑍)] and shaded [𝑉𝑥𝑠ℎ𝑎𝑑𝑒𝑑

𝑆 (Δ𝑋, Δ𝑌, Δ𝑍)] elements of the MW surface at a spatial resolution of 

Δ𝑋, Δ𝑌, Δ𝑍 = 0.04 m which is representative of the RW observation spatial resolution (Section 2.2) 

 

Figure 3. Surface representation and interaction in the ‘model world’ (MW) is defined by triangle face (𝑆) and voxel (𝑉𝑥) elements, with 

camera view modelling to simulate camera image plane (IP). See table and text for symbol and acronym definitions. 
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DART can simulate radiative transfer processes in the visible to LWIR regions of the electromagnetic spectrum (Yin et al., 

2015) in the atmosphere and any urban or natural landscape. Individual rays are tracked along discrete directions within 

angular cones (Yin et al., 2013). Landscape, or ‘bottom of atmosphere’ (BOA), illumination is due to direct and diffuse sun 

radiation (𝐸𝑆𝑊
↓ ) and 𝐸𝐿𝑊

↓ . It is simulated as rays that flow from a horizontal BOA layer at the top of the landscape (Figure 

3). The surface density of these illumination rays is 1/D2, with D the BOA illumination grid resolution. To simulate RW 

camera images taken above the BOA layer (Figure 3), rays that reach the BOA mesh layer are projected onto a simulated 

camera IP (Yin et al., 2015). A comprehensive description of DART including further functionality beyond the scope of 

this paper is provided by Gastellu-Etchegorry et al. (2015). DART camera image simulation specifics are detailed in Yin et 

al. (2015). 

 

2.3.1 Surface creation 

The DSM was created using Blender, based on the known site geometry (Section 2.1) and stored as a DART compatible 

“*.obj” wavefront data format. Here the metadata stored by this format for each triangle face includes facet orientation for 

the surface classification (Section 2.3.2). The DSM has the RW surface geometry (Figure 2) for the full site (𝑋 = 50 m, 𝑌 = 

100 m, 𝑍 = 1.5 m), discretised into surface voxels using the MW definition of DSM – voxel interaction (Figure 3) at a 

resolution of Δ𝑋 = Δ𝑌 = Δ𝑍 = 0.04 m. The 𝑋 axis of the voxel array is aligned with the 𝑋 axis of the DSM (Figure 2). 

2.3.2 Surface classification 

The spatial and temporal class characteristics (orientation, surface insolation state) allow a dynamic high spatial resolution 

3D classification of the MW surface as 𝑖(𝑋, 𝑌, 𝑍).  

DART stores local incident and intercepted radiation in two different ways. It stores the upward directional radiance per 

surface element of the landscape, for simulating RS measurements. Also, the landscape 3D radiative budget is stored: 

irradiance and exitance per voxel upper face; and the radiation that is intercepted, absorbed and emitted per voxel. Here, 

the DART simulated 3D radiative budget is used to determine the sunlit or shaded status of  𝑉𝑥𝑖
𝑆(𝑋, 𝑌, 𝑍) through time, 

where 𝑖 = sunlit or 𝑖 = shaded. The sunlit and shaded areas of the MW are resolved at the voxel size (Δ𝑋 = Δ𝑌 = Δ𝑍 = 0.04 

m, Section 2.3.1). Direct downwelling SW radiation (𝐸𝑆𝑊,𝑑𝑖𝑟
↓ ) is simulated with solar angles calculated using NOAA solar 

calculator equations (NOAA, 2016). Here, DART tracks BOA rays (mesh cell size D = 0.02 m) with radiant flux density 

𝐸𝑆𝑊(𝛺, θ, 𝜙) (W m-2) along solid angle 𝛺 (sr) with direction (θ, 𝜙) until incident on a DSM triangle. Hence, each triangle 

intercepted 𝐸𝑆𝑊(𝛺, θ, 𝜙) is stored for the voxel that occupies the 3D space of the triangle (Figure 3) which across the 

entire scene produces a 3D array of voxels with values of intercepted irradiance (W m-2). If a surface voxel has stored no 

direct solar irradiance (i.e. cloud, night or building obstruction) then the voxel is classified as shaded (𝑉𝑥𝑖=𝑠ℎ𝑎𝑑𝑒𝑑
𝑆 ), 

otherwise it is sunlit (𝑉𝑥𝑖=𝑠𝑢𝑛𝑙𝑖𝑡
𝑆 ). If RW geometry were more complex, the classes could be split into discrete or binned 

values of irradiance intercepted by a MW surface. 

The surface orientation attribute of each triangle face 𝑆 (Section 2.3.1) is one of the four cardinal orientations relative to 

north (e.g. 𝑖 = east) or horizontal orientations (e.g. 𝑖 = roof). Blender is used to determine the smallest angular difference 

between a triangle normal and the normal of each orientation. Once classified, the DSM is used to determine the 

orientation of sunlit or shaded voxels. Any sunlit or shaded surface voxel intersected by 𝑆𝑖  is classified as a sunlit or 

shaded voxel with orientation class 𝑖 (e.g. 𝑉𝑥𝑖=𝑟𝑜𝑜𝑓,𝑠𝑢𝑛𝑙𝑖𝑡
𝑆 (𝑋, 𝑌, 𝑍)). 

2.4 Model world instrumentation 

MW ‘instrumentation’ is used to classify each pixel of a RW camera observation by camera view modelling and to perform 

camera view modelling of 𝑀𝐿𝑊
3𝐷  for a given RS view angle. Here, a MW ‘instrument’ is defined as the simulation of a RW 

camera perspective using camera view modelling. The RW camera images are classified at pixel level as 𝑖(𝑥, 𝑦) using 

basic pinhole cameras as the MW instruments. A basic pinhole camera has a rectilinear projection, meaning any straight 

lines in the MW domain are always projected as straight lines in the pinhole camera IP. A comprehensive description of 

this technique can be found in Hartley and Zisserman (2000). An overview of the steps taken to map a MW domain surface 

element with coordinates (𝑋, 𝑌, 𝑍) onto an IP with pixel coordinates (𝑥, 𝑦) is presented in Figure 4. Common 

discrepancies between a theoretical and RW camera are highlighted, with methods given for the calibration of the low-

resolution RW LWIR cameras to perform as a pinhole camera (Section 2.4.1). Methods used to apply the MW camera with 

the classified DSM (Section 2.4.3) are given along with uncertainties associated with the alignment error between RW and 

MW camera perspectives (Section 2.4.2). 

All cameras have extrinsic and intrinsic parameters that determine the (𝑋, 𝑌, 𝑍) → (𝑥, 𝑦) coordinate transformation 

(Figure 4). Extrinsic parameters of rotation (𝑅) and translation (𝑡) describe the rigid transformation of a 3D coordinate 

frame to a 3D camera reference frame (𝑋, 𝑌, 𝑍) → (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) with new coordinate origin 𝑂𝑐 (Hartley and Zisserman, 

2000; Heikkila and Silven, 1993). RW cameras with physically small, wide-angle lenses exhibit radial distortion, meaning 

image points are displaced radially in the IP. This type of projection is not comparable to that of an ideal pinhole camera. 

Here, the camera intrinsics and lens distortion parameters are defined together as the camera internal parameters, which 

must be estimated (Section 2.4.1).   
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Figure 4. Coordinate and transformation definitions for ‘model world’ elements. (𝑋, 𝑌, 𝑍) → (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) is the rigid transformation from 

the three-dimensional coordinate frame with origin 𝑂, to the three-dimensional camera coordinate frame with origin 𝑂𝑐 using 

camera extrinsic parameters of rotation 𝑅 and translation 𝑡. (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) → (𝑥, 𝑦) is the projective transformation from camera 

coordinate frame to two-dimensional camera image plane (IP) frame (yellow). 𝑅 represents a series of Euler angles β, ϕ and ω that 

define a sequence of rotations: first around the 𝑥𝑐-axis (β), then around the 𝑦𝑐-axis (ϕ’) that has already been rotated by β, and 

finally around the 𝑧𝑐-axis (ω’’) that has already been twice rotated firstly by β and then ϕ’ (Heikkila and Silven, 1993). 𝑡 is a vector 

that describes the MW origin (𝑂) as camera coordinate origin (𝑂𝑐). Intrinsic parameters of focal length 𝐹, pixel scale factor (eqn. 4) 

and principle point offset are used for the final projection of 3D points onto the 2D camera IP as (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) → (𝑥, 𝑦). These 

parameters are determined by physical camera features including pixel size and the relative position of the IP to 𝑂𝑐. The point at 

which the principle axis (𝑧𝑐) intersects with the IP is the principle point 𝑃 (Hartley and Zisserman, 2000). For a pinhole camera, 𝑃 

intersects at the centre of the IP. For RW cameras, the principle point offset describes the offset between 𝑃 and the centre of the IP 

which may arise from imperfections in the lens-FPA assembly. This results in a misalignment of the lens with the FPA (Clarke et al., 

1998) and hence needs to be accounted for.  

 

2.4.1 Estimation of camera internal parameters 

To formulate a MW camera, extrinsic and internal parameters must be known or estimated. Extrinsic parameters of RW 

camera location and orientation are determined by on-site measurements. Internal parameters are required to match the 

RW image projection to a MW pinhole camera. A method is presented to experimentally estimate the internal parameters 

of a RW LWIR camera for correction of raw images to a rectilinear pinhole projection. The method requires known 

parameters of physical FPA size (𝑑𝐹𝑃𝐴, mm) and image resolution (𝑛𝑝𝑥, pixels) which are obtained from instrument 

specifications.  

Camera internals are determined using a 0.5 m x 0.5 m polished steel plate (ε ≈ 0.02) populated by squares of masking tape 

(ε ≈ 0.95) to produce a planar calibration grid of 8 x 7 cells each 0.05 m x 0.05 m. This configuration allows a grid cell 

corner to be identified as (𝑋𝑜, 𝑌𝑜 , 𝑍𝑜) in camera (𝑥, 𝑦) coordinates (Figure 4). When placed outside on a clear or totally 

overcast day, the grid pattern can be observed in the LWIR due to the emissivity contrast between steel and masking tape. 

Images are taken until the grid has been captured by all parts of the LWIR camera IP at different rotations (~ 25 images per 

camera). Captured images are processed with the Matlab camera calibration toolbox (Bouguet, 2015) to map each grid 

cell corner, (𝑋𝑜, 𝑌𝑜 , 𝑍𝑜) to (𝑥, 𝑦) coordinates. Estimated camera extrinsic and internal parameters are used to transform the 

image using the Matlab toolbox. Grid corner points are again detected in this transformed image and compared to points 

projected onto the IP by the estimated extrinsic and internal parameters. This is an iterative process that stops when the 

error between detected and projected points is minimised in the least squares sense. The internal parameters applied to 

achieve this “best fit” between detected and projected points are assigned as the camera internal parameters enabling it to 

be treated as a pinhole camera. 

The specified FOV (Section 2.2) decreases when images are transformed to pinhole projections (Table 1). The FOV is 

determined by obtaining the focal length (𝐹) from the calibrated pixel scaling factor (𝑠) and the known FPA size (𝑑) in the 

image 𝑥 or 𝑦 coordinate directions with known FPA resolution (𝑛𝑝𝑥) in the image 𝑥 or 𝑦 coordinate directions: 

𝐹 = 𝑠(𝑑𝐹𝑃𝐴 𝑛𝑝𝑥⁄ )          (4) 

which is related to the camera FOV (radians) in the image 𝑥 or 𝑦 coordinate direction by: 

𝐹𝑂𝑉 = 2𝑎𝑟𝑐𝑡𝑎𝑛(𝑑𝐹𝑃𝐴 2𝐹⁄ ).        (5) 

The derived internal parameters are used to re-map each pixel from each RW image using the nearest neighbour technique.  

Table 1 Field of view of undistorted pinhole camera equivalent LWIR cameras used in the study. See text for methods. See Figure 2 for 

camera locations. 

Camera ID 
Undistorted FOV 

Horizontal (o) Vertical (o) 

Cnorth 41.4 31.6 

Csouth 40.5 30.9 



Morrison W, S Kotthaus, CSB Grimmond, A Inagaki, T Yin, J-P Gastellu-Etchegorry, M Kanda, CJ Merchant 2018: A novel method to 

obtain three-dimensional urban surface temperature from ground-based thermography Remote Sensing of the Environment 

https://doi.org/10.1016/j.rse.2018.05.004 

 

9 

 

 

2.4.2 Reprojection error 

Assuming internal parameters have been accurately accounted for (Section 2.4.1), any misalignment between RW and MW 

camera perspectives depends on the prescribed MW camera extrinsic parameters of (β, ϕ, ω) rotation (𝑅) and (𝑋, 𝑌, 𝑍) 

translation (𝑡) shown in Figure 4. These parameters can be determined from RW measurements. An uncertainty in these 

measurements translates as an error in the MW camera perspective. A misalignment error based on estimates of uncertainty 

associated with on-site measurement of camera extrinsic parameters is calculated in root mean square error (RMSE) terms. 

Firstly, the extrinsic parameters for camera Csouth (Figure 2) measured on site are defined as “aligned” parameters. It is 

assumed that measurements of camera location (performed using a tape-measure) have an estimated measurement 

uncertainty of 0.1 m for each location axis. (β, ϕ) are estimated from azimuth and zenith angle measurements (θ, ϕ) taken 

using a compass and protractor, respectively. Cameras are installed with no intentional rotation around the camera axis (ω). 

Each rotation has an assumed uncertainty of 1o. To quantify the impact of this assumed 𝑅 and t measurement uncertainty, 

all possible permutations of these rotations and translations are determined at resolution of Δo = 0.5 (e.g. [β − 1o] → [β + 

1o], Δo = 0.5) and Δm = 0.05 (e.g. [𝑋 − 0.1 m] → [𝑋 + 0.1 m], Δm = 0.05). For each permutation, all roof vertices of the 

DSM (𝑋, 𝑌, 𝑍) are updated with new MW coordinates (𝑋′, 𝑌′, 𝑍′) by rotating and translating each DSM roof vertex around 

the camera origin 𝑂𝑐 (Figure 4) based on the permutation-specific (𝑅, 𝑡) values. The Euclidean distance 𝑑 between the 

original and updated vertices, where: 

𝑑 = √(𝑋′ − 𝑋)2 + (𝑌′ − 𝑌)2 + (𝑍′ − 𝑍)2       (6) 

is used to quantify the misalignment RMSE. Only roof vertices are analysed as occluded surfaces cannot be tracked from 

the camera perspective. With this degree of uncertainty, the maximum RMSE between all roof vertices within the camera 

FOV is 0.43 m. A final adjustment of simulated (𝑅, 𝑡) extrinsic parameters is needed as this error is significant. This is 

challenging given that (𝑅, 𝑡) combine to give a high number of degrees of freedom. Adjustment is done using the 

experimentally derived (𝑅, 𝑡) parameters applied to a Blender pinhole camera perspective of the DSM. A RW camera 

image corrected to pinhole camera projection (Section 2.4.1) is made semi-transparent and then draped over the Blender 

camera FOV. The camera is then moved interactively around the DSM allowing (𝑅, 𝑡) to be manually adjusted as a 

supervised final alignment. A new alignment uncertainty when extrinsic parameters are manually adjusted is assumed < 

0.1o for each rotation and < 0.05 m for each location parameter (RMSE < 0.06 m). This method yields good alignment 

results when comparing the projected geometry for RW (Figure 5a, e) and MW (e.g. Figure 5b, c) imagery, which is 

further evaluated using high resolution digital camera imagery (Figure 6). 

2.4.3 Classification of camera images 

The classified MW surface (Section 2.3.2) is projected onto a MW camera IP to facilitate RW image classification. MW 

cameras are created using Blender and DART to simulate the RW camera per-pixel perspective of orientation (e.g. Figure 

5b) and shadowing (e.g. Figure 5c) attributes, respectively. 

The 3D rendering capabilities of Blender are used to classify images by surface orientation. All triangle faces of the DSM 

within an orientation class 𝑖 (𝑆𝑖, Section 2.3.2) are assigned a colour with a specific RGB value. The DSM is then 

projected onto each MW camera IP to produce images with per-pixel RGB values related to each orientation class (Figure 

5b, f) which enables per-pixel surface classification as 𝑖(𝑥, 𝑦). The instantaneous field of view (IFOV) of some pixels 

within these images contain more than one surface class. This effect translates as pixels without a RGB value associated 

with a single class. Pixels with this characteristic are classified as “mixed”. The radiometer boom within Csouth 

observations (Figure 5a) is manually masked. Mixed and masked pixels are not included as part of any surface class. 

 
Figure 5. Observations, classification and extrapolation of results for Optris PI longwave infrared (LWIR) camera (a - d) 𝐶𝑠𝑜𝑢𝑡ℎ and (e 

- h) 𝐶𝑛𝑜𝑟𝑡ℎ at COSMO test site (Figure 2, 2nd August 2014 10:00 local standard time). (a, e) ‘Real world’ (RW) brightness temperature 

(𝑇𝑏) images; (b, f) classification of per-pixel surface orientation using Blender ‘model world’ (MW) camera view of the digital surface 

model (DSM) containing surface orientation information. Surface information is coded as per-class RGB textures projected onto a 

Blender camera for per-pixel identification of surface orientation. RGB values in the image not associated with an RGB texture class 

see more than one class and are classified as mixed pixels (black); (c, g) classification of per-pixel surface shadowing derived by 

DART shortwave scattering simulation and camera view model shown as shortwave bidirectional reflectance factor (BRF; 
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Schaepman-Strub et al., 2006), dark pixels (BRF = 0) indicate no first order scattering from surface to camera; (d, h) simulated 𝑇𝑏 

thermographs:  𝑇𝑏 observations extrapolated to a MW three-dimensional distribution based on surface classes (shown in b, c, f, g) re-

projected onto a MW camera image plane simulated in DART, simulating ‘real world’ (RW) camera observations (a, e). 

 

Sunlit and shaded pixels for each RW image are classified using the 3D distribution of sunlit and shaded surfaces from the 

DART simulation of direct downwelling SW radiation (Section 2.3.2). DART camera view modelling enables the 3D 

distribution of sunlit and shaded surfaces to be projected onto the MW camera perspective (Figure 5c, g). First order 

scattering of 𝐸𝑆𝑊(𝛺, θ, 𝜙) from a surface is considered during the image classification, with DSM triangles being assigned 

as Lambertian reflectors in DART. Scattering from the surface occurs isotropically with exitance 𝑀𝑆𝑊
↑  (W m-2): 

𝑀𝑆𝑊
↑ = ∫ 𝐸𝑆𝑊(𝛺, 𝜃, 𝜙) ⋅ 𝑐𝑜𝑠𝜃 ⋅ 𝑑𝛺

 

2𝜋
.       (7) 

Due to first order scattering, any pixels of the DART MW camera with at-sensor radiance > 0 W m-2 sr-1 originates from a 

sunlit voxel (𝑀𝑆𝑊
↑  > 0 W m-2) intersected by a sunlit portion of the DSM. The IFOV of pixel (𝑥, 𝑦) with at-sensor 

radiance > 0 W m-2 sr-1 is therefore classified as observing a sunlit surface (e.g. Figure 5b). Isolated pixels (i.e. no adjacent 

pixels of the same class) are reclassified as “mixed” as it is assumed there is insufficient spatial representation of the 

surface class from one pixel. The DART modelling of shadow distributions is evaluated in the RW using a Panasonic 

DMC-TZ31 digital camera image taken during clear sky daytime conditions (Figure 6a). The digital camera is assumed to 

exhibit pinhole camera characteristics. Shadow distributions across the image are then classified using a DART MW 

camera using manufacturer derived internal camera parameters. The illuminated surface geometry and distribution of 

shadow patterns visible in the MW camera image (Figure 6b) agree with the digital camera image (Figure 6a). 

 
Figure 6. Images of COSMO test site taken at 15:25 local standard time on 26th September 2014 with approximate 𝐶𝑛𝑜𝑟𝑡ℎ perspective 

(Figure 2) from (a) a ‘real world’ (RW) digital camera and (b) simulated by a ‘model world’ (MW) camera in the shortwave using 

the Discrete Anisotropic Radiative Transfer (DART) model to compare the performance of DART when 1) simulating RW camera 

perspectives 2) resolving shadow patterns at high spatial resolution (0.04 m) across a canopy surface. Greyscale intensity (b) is used 

for qualitative indication of shaded (black) and sunlit (grey → white) surfaces. Comparison (c) shown as RW – MW greyscale 

intensity difference. 

3. Longwave radiation flux extrapolated to 3D distribution 

Data from classified images (Section 2.4.3) are used with the classified MW surface (Section 2.3.2) to produce 𝑀𝐿𝑊
3𝐷  at 

high spatial resolution. Pixels classified as class 𝑖(𝑥, 𝑦) within each MW camera image are associated with observations 

from the RW LWIR camera to obtain classified RW 𝑀𝐿𝑊
𝑐𝑎𝑚(𝑥, 𝑦) in the form 𝑀𝐿𝑊,𝑖

𝑐𝑎𝑚(𝑥, 𝑦). The mixed and masked pixels 

(Figure 5b, f) are not considered. All pixels for a given class from all cameras are aggregated to a mean value �̃�𝐿𝑊,𝑖
𝑐𝑎𝑚. 

Voxels of class 𝑖 are assigned 𝑀𝐿𝑊,𝑖
𝑐𝑎𝑚 to resolve per-voxel 𝑀𝐿𝑊, shown in Figure 7 as brightness temperatures. This product 

constitutes 𝑀𝐿𝑊
3𝐷  for a given time step. A voxel may be intersected by two or more triangles with faces of different class, 

which can occur at the corner of a building (Figure 7). In this case, the mean of �̃�𝐿𝑊,𝑖
𝑐𝑎𝑚 for all classes involved is calculated 

for these voxels. This causes the unique brightness temperature values at intersecting facets with different orientation and 

temperature (Figure 7). 
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The view angle configuration of the RW cameras (Figure 2) and the nature of allocatable surface classes means the classes 

assigned in 3D space 𝑉𝑥𝑖
𝑆( 𝑋,  𝑌,  𝑍) are always observed by a camera for any given time step. The spatial form of 𝑀𝐿𝑊

3𝐷  

is inherently linked to the DSM (Figure 3) meaning the 

methodology is applicable to complex geometry and 

limited only by the voxel resolution and DSM level of 

detail. 

 

Figure 7. Per-voxel brightness temperature (𝑉𝑥𝑇𝑏
𝑆 ) 

extrapolated from observations for one time-step (2nd 

August 2014 10:00 local time, (same as Figure 5) for an 

arbitrary 8 m x 8 m subset of the ‘model world’ (MW) 

domain visualized as a three-dimensional point cloud, 

with each point at the centroid of a voxel. 

𝑉𝑥𝑇𝑏
𝑆 ( 𝑋,  𝑌,  𝑍) resolved at  𝑋 =  𝑌 =  𝑍 = 0.04 m 

spatial resolution. 

4. Results and discussion 

The methodology is applied using observations referenced at local time for 2nd August 2014 (day of year 214). This is a 

mostly cloud-free day following an extended dry period of cloudy and part-cloudy days. The short time period is chosen to 

ensure the high temporal resolution of observations is fully applied and resolved.  

4.1. Image classification 

The classification methodology enables quantitative identification of the surface types seen by each camera on a per-pixel 

level. Figure 8 summarises the fraction of pixels assigned to each class within each camera image. Differences in the inter-

camera pixel fractions assigned to each class can be explained by the location and orientation of each camera. Cnorth views 

the higher fraction of ground and roof surfaces (53.80%, 10327 pixels) due to the lower camera zenith angle (Figure 2). 

Camera Csouth views a higher fraction of vertical surfaces (37.44%, 7190 pixels). Mixed pixels make up 29.12% (Csouth) 

and 20.11% (Cnorth) of the images. Mixed pixels are identified during image classification of surface geometry (e.g. 

Figure 5b) and if any classified pixels are isolated (Section 2.4.3). Csouth imagery contains 528 (2.75%) masked 

radiometer boom pixels and more mixed pixels than Cnorth. This is explained by its higher zenith angle and therefore 

longer average path length. Surfaces further away from the camera are more likely to be mixed within each pixel IFOV.  

When a vertical surface first becomes insolated, the incident radiation is low as the angle of incidence is near parallel with 

the surface. In the MW, this is associated with a low density of DART illumination rays (Section 2.3.2) incident on these 

surfaces which introduces erroneous patterns in surface insolation status. Until the density of rays is sufficient across the 

MW surface, some pixels may be isolated from other pixels of the same insolation class. This explains the observed 

temporal variability in mixed pixels that coincides with walls coming into, and out of, shade. It could be corrected by 

increasing the surface density of illumination rays in the DART SW simulations (Section 2.3.2) at the expense of 

computation time. With the given MW resolution, the effect occurs twice for both cameras around 10:00 and 13:00. Each 

period has a ~10 min duration that increases mixed pixels across each image by up to 9% (Figure 8).  Afternoon periods 

when all non-mixed pixels are intermittently classified as shaded are caused by short periods of overcast conditions based 

on direct incoming SW radiation (Figure 9a) measurements taken at the COSMO test site using a MS-56 Pyrheliometer 

(EKO Instruments).   
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Figure 8. Fraction 𝑓 of all pixels in a camera image assigned to surface class 𝑖 for cameras 𝐶𝑠𝑜𝑢𝑡ℎ and 𝐶𝑛𝑜𝑟𝑡ℎ for day of year 214 at 

local standard time. Resolution of classified images is 1 min. Short periods of daytime shadow due to overcast periods determined 

from [𝐸𝑆𝑊,𝑑𝑖𝑟
↓  (COSMO)] observations (Figure 9). Mixed pixels contain more than one surface class or are isolated pixels (Section 

2.4.3).  

4.2. Inter-camera comparison 

𝑀𝐿𝑊
𝑐𝑎𝑚 agreement between instruments using manufacturer derived calibration coefficients (Section 2.2) is evaluated using 

measurements taken during the study day. Given the camera fields of view did not overlap, contact thermocouples were 

installed to give reference measurements enabling comparison of the camera calibrations. Unfortunately, instrumentation 

issues resulted in complete data loss from the thermocouples. Roof facets have a highly uniform radiative environment 

across the whole COSMO test site and offer the best available comparison to evaluate camera agreement (Figure 9). 

Camera heights and zenith angles are similar (Section 2.1) with 19.86 % and 22.26 % of image pixels classified as roofs 

for Csouth and Cnorth, respectively (Figure 8). Results show a systematic difference (slope 1.07, intercept -22.01 K) 

between observations of the roof pixels by the two cameras (Figure 9). The camera calibration sensitivity to camera body 

temperature in an outdoor setting is likely the primary contributor to the instrument uncertainty seen with the setup at 

COSMO (2 K). This translates into systematic differences in the observations and a hysteresis effect (Figure 9). Potentially 

rapid and uneven changes in temperature across each camera body cannot be fully accounted for by the camera calibration 

routine (Section 2.2). Other contributing factors, which cannot be easily quantified at this observational scale using the 

classification approach adopted, include differences in roof emissivity from surface weathering effects and anisotropy in 

surface emissivity (Nakayoshi et al., 2015). To reduce the impact of any systematic sensor disagreement on the 

extrapolated 𝑀𝐿𝑊
3𝐷  product, Cnorth is corrected to Csouth by linear regression using observations of the roof pixels from 

each camera (Figure 9). This approach is considered reasonable within the scope of the study as inter- and intra-facet 

variability is retained, and sensor specific biases are minimised.   

 
Figure 9. Inter-camera comparison of the mean broadband longwave radiation derived from roof pixels within the FOV of both cameras 

shown as (a) brightness temperatures (𝑇𝑏𝑟𝑜𝑜𝑓
𝑐𝑎𝑚 ) for 𝐶𝑠𝑜𝑢𝑡ℎ (black) and 𝐶𝑛𝑜𝑟𝑡ℎ (red) surfaces with observations at 1 min resolution. 

Direct incoming shortwave radiation 𝐸𝑆𝑊,𝑑𝑖𝑟
↓  (COSMO)] measured on site using MS-56 Pyrheliometer (EKO Instruments) at 1 min 

resolution. Japan Meteorological Agency (JMA) air temperature measurements [𝑇𝑎 (JMA)] measured at Kumagaya AMeDAS 

(Automated Meteorological Data Acquisition System) station at 1 min resolution. (b) Relation between  𝑇𝑏𝑟𝑜𝑜𝑓
𝑐𝑎𝑚  (𝐶𝑠𝑜𝑢𝑡ℎ) and 𝑇𝑏𝑟𝑜𝑜𝑓

𝑐𝑎𝑚  

(𝐶𝑛𝑜𝑟𝑡ℎ) with linear regression slope (m) and intercept (b) coefficients, used to correct the observations used throughout all results. 

In this figure observations are shown uncorrected. 
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4.3. Classified brightness temperature observations 

Variability of inter-class and intra-class observations is shown in Figure 10 on a per-pixel level for all cameras throughout 

the study date (mixed and masked pixels are excluded). As expected, the variability of the pre-classified pixels for all 

cameras (Figure 10a) is greatest during the daytime, with hourly differences between the 5th and 95th percentiles of pixel 

distributions reaching 18.4 K between 12:00 – 13:00. With increasing level of spatial detail in pixel classification 

accounting for insolation status (Figure 10b), orientation (Figure 10c) and both combined (Figure 10d), the inter-class 

ranges of 𝑇𝑏
𝑐𝑎𝑚 typically decrease. This suggests the class related differences are helpful in explaining some of the 𝑇𝑏

𝑐𝑎𝑚 

variability. Brightness temperatures are most variable for the ground pixels (Figure 10c), with shaded or sunlit ground 

surface pixel distributions (Figure 10d) both being large throughout daytime. Hourly differences between 5th and 95th 

percentiles reach 15.0 K (12.2 K) for all shaded (sunlit) ground surface pixels between 12:00 – 13:00 (11:00 – 12:00). The 

shadowing history is associated with this variability, with a thermal hysteresis effect due to the thermal inertia of concrete. 

For example, between 14:00 – 15:00, the 25th percentile of sunlit pixels have similar values to the 75th percentile of shaded 

pixels. The greater sky view factor of roofs compared to all other facets influences inter-class variability, with median 

brightness temperature of roof pixels up to 2 K lower than all other classes between 00:00 – 05:00 (sunrise 04:55). 

Similarly, daytime roof brightness temperatures are highest (median = 330.8 K, 13:00 – 14:00, Figure 10c) and for this 

time interval 15 K greater than north wall facet temperatures.  

4.4 Extrapolated longwave radiation flux 

The parameterisation of 𝑀𝐿𝑊
3𝐷  is evaluated by modelling its upwelling LWIR radiation projected onto the IP of MW 

cameras. The per-pixel MW camera perspective is 𝑀𝐿𝑊
𝑐𝑎𝑚(MW, 𝑥, 𝑦) (i.e. Figure 5d, h). 𝑀𝐿𝑊

𝑐𝑎𝑚(RW) is extrapolated to 𝑀𝐿𝑊
3𝐷  

(Section 3) with per-pixel differences calculated [𝑀𝐿𝑊
𝑐𝑎𝑚(RW, 𝑥, 𝑦) - 𝑀𝐿𝑊

𝑐𝑎𝑚(MW, 𝑥, 𝑦)] as an evaluation step. Figure 11 

shows brightness temperature differences [i.e. 𝑇𝑏
𝑐𝑎𝑚(RW, 𝑥, 𝑦) - 𝑇𝑏

𝑐𝑎𝑚(MW, 𝑥, 𝑦)] at six times during the case study day. 

Nighttime period per-pixel RW - MW brightness temperature differences never exceed ± 1 K (not shown) due to the low 

intra-class variability (Figure 10d). Daytime per-pixel RW - MW differences are evident and indicate some RW processes 

remain unresolved by 𝑀𝐿𝑊
3𝐷 . Areas within the imagery where 𝑇𝑏

𝑐𝑎𝑚(MW) underestimates 𝑇𝑏
𝑐𝑎𝑚(RW) (red) or where 

𝑇𝑏
𝑐𝑎𝑚(MW) overestimates 𝑇𝑏

𝑐𝑎𝑚(RW) (blue) include edges of building blocks, edges of shadows and locations across all 

ground surfaces. 𝑇𝑏
𝑐𝑎𝑚(MW) typically underestimates 𝑇𝑏

𝑐𝑎𝑚(RW) for top-of-wall pixels. Absolute maximum differences 

between 𝑇𝑏
𝑐𝑎𝑚(RW) and 𝑇𝑏

𝑐𝑎𝑚(MW) can reach 15 K for individual pixels within both Csouth and Cnorth imagery, with 1st 

and 99th percentiles -4.34 K and 4.97 K, respectively. There are artefacts in MW camera imagery around all roof edges that 

face away from the cameras (e.g. Figure 5d, h). These are caused by the resolution of 𝑀𝐿𝑊
3𝐷  and DART discretisation of 

LWIR surface exitance and explain some of the large absolute differences around roof edge pixels. The camera point 

spread function may impact how well the intersection between facets of contrasting temperatures are resolved but was not 

available from the manufacturer for further investigation. This effect coupled with any slight misalignment between RW 

and MW cameras (Section 2.4.2) may compound to explain high 𝑇𝑏
𝑐𝑎𝑚(RW) - 𝑇𝑏

𝑐𝑎𝑚(MW) differences near facet edges.  
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Figure 10. Intra-class variability of camera brightness temperatures (𝑇𝑏
𝑐𝑎𝑚) on 2nd August 2014. Each boxplot is all pixels assigned to a 

class (colour) from both cameras (images 1 min samples) during 1 h, with 5 and 95 percentiles (whiskers), interquartile range (box) 

and median (horizontal line) for pixels classified by: (a) all, (b) surface insolation status, (c) surface orientation, and (d) orientation 

and insolation status. 

 

Surface energy exchange processes may further contribute to 𝑇𝑏
𝑐𝑎𝑚(RW) - 𝑇𝑏

𝑐𝑎𝑚(MW) differences near facet edges. The 

building blocks are hollow causing different thermal admittance at their edges. Further, the edges of buildings may be 

exposed to higher wind speeds which modify heat transfer and therefore surface temperature. In addition, roof edges on the 

sunlit side of buildings have distinctly high observed brightness temperatures (e.g. Figure 5a, e) associated with the 

different sky view factors. Maximum brightness temperatures for mixed pixels at these building edges are up to 7.4 K 

(13.3 K) higher than the median of intersecting roof (wall) facets at 13:35. This may be explained by high solar irradiance 

(high sky view factor) and absorption of these areas throughout the day.  

Closer to the ground, wall view factors are larger and ground surface reflection captured by 𝑇𝑏
𝑐𝑎𝑚(RW) is more important. 

Surfaces in these regions receive radiation from regions with cooler surface temperatures that have been in shade for 

prolonged periods (e.g. Figure 11e), and from regions with warmer surface temperatures that have been sunlit for 

prolonged periods (e.g. Figure 11i). The large distribution of brightness temperatures for observed ground pixels (Figure 

10c, d) is not represented in 𝑀𝐿𝑊
3𝐷  which only contains information on mean values of 𝑀𝐿𝑊,𝑖

𝑐𝑎𝑚 (Section 3). The errors 

associated with this assumption are seen in Figure 11 mainly for shaded ground pixels and ground pixels at the edges of 

buildings. A shadow hysteresis is evident at multiple time steps (e.g. Figure 11d center block, Figure 11i front center 

block) as brightness temperatures of surfaces coming out of (into) shade are overestimated (underestimated) by 𝑀𝐿𝑊
3𝐷 .  

The extent to which these unresolved sub-facet processes influence the directional brightness temperature aggregated 

across each IP of 𝑇𝑏
𝑐𝑎𝑚(𝑀𝑊) is subsequently investigated. The aggregated at-sensor brightness temperature (�̃�𝑏

𝑐𝑎𝑚) for 

𝑇𝑏
𝑐𝑎𝑚(𝑅𝑊)  and 𝑇𝑏

𝑐𝑎𝑚(𝑀𝑊) view is determined at 15 min resolution for the whole day ( 
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Figure 12). �̃�𝑏
𝑐𝑎𝑚 is the mean of all non-masked pixels in a camera IP. This analysis is similar to results demonstrated for 

existing sensor view modelling approaches (e.g. Soux et al., 2004). In this paper, �̃�𝑏
𝑐𝑎𝑚(𝑅𝑊) - �̃�𝑏

𝑐𝑎𝑚(𝑀𝑊) differences 

show a diurnal pattern ( 
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Figure 12). When 𝑀𝐿𝑊
3𝐷  is prescribed using insolation and orientation (solid lines,  
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Figure 12), RW - MW differences reach ±0.65 K during daytime at 12:45 for 𝐶𝑛𝑜𝑟𝑡ℎ, and are within 0.40 K during 

nighttime. Prescribing 𝑀𝐿𝑊
3𝐷  based only on orientation (dashed lines,  
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Figure 12; shown as inter-class distributions at pixel level in Figure 10c) leads to good agreement at night when inter-class 

variability is small and shadows do not occur. During daytime, however, not accounting for shadow patterns means 

�̃�𝑏
𝑐𝑎𝑚(𝑀𝑊) is up to 0.90 K warmer (cooler) than �̃�𝑏

𝑐𝑎𝑚(𝑅𝑊) for 𝐶𝑠𝑜𝑢𝑡ℎ (𝐶𝑛𝑜𝑟𝑡ℎ) at 12:45.  

 

 

Figure 11. Brightness temperature (𝑇𝑏) differences between LWIR camera observations from ‘real world’ (RW) [𝑇𝑏
𝑐𝑎𝑚(RW)] and ‘model 

world’ (MW) for six times (see labels on sub-plots) on 2nd August 2014, for camera (a - f) 𝐶𝑠𝑜𝑢𝑡ℎ and (g - l) 𝐶𝑛𝑜𝑟𝑡ℎ.  𝑇𝑏
𝑐𝑎𝑚(MW) is 

simulated by DART camera view modelling using predetermined 3D distribution of longwave flux (𝑀𝐿𝑊
3𝐷 ). (a – f) Radiometer boom 

masked (grey) from results. Boxplot (inside legend) for all non-masked pixels within all time steps throughout the day (15 min 

resolution) with 1st and 99th percentiles (whiskers), interquartile range (box) and median (horizontal line). 
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Figure 12. Comparison of ‘real world’ (RW) and ‘model world’ (MW) 

aggregated at-sensor broadband longwave radiation observations (as 

brightness temperatures) for cameras 𝐶𝑠𝑜𝑢𝑡ℎ (black) and 𝐶𝑛𝑜𝑟𝑡ℎ (red) 

2nd August 2014 local standard time. MW observations simulated by 

DART camera view modelling using predetermined 3D distribution of 

longwave flux (𝑀𝐿𝑊
3𝐷 ) at the COSMO test site. 𝑀𝐿𝑊

3𝐷  prescribed using all 

surface classes (solid lines) and orientation classes only (dashed lines). 

 

 

 

 

 

 

 

 

 

 

 

4.5 Normalised effective anisotropy 

Apparent brightness temperatures viewed from the COSMO surface over multiple discrete directions (375 directions over 

the hemisphere) are simulated using DART and 𝑀𝐿𝑊
3𝐷 . The apparent brightness temperature for a direction is the parallel 

projection of 𝑀𝐿𝑊
3𝐷  onto a plane that is perpendicular to the view direction, aggregated to a single directional brightness 

temperature value. Here a 29.5 m x 29.5 m sample of 𝑀𝐿𝑊
3𝐷  is analysed. The normalized effective anisotropy (Figure 13) is 

defined as the apparent brightness temperature from a nadir view minus the apparent brightness temperature at a given 

direction. Modelled values of normalised effective anisotropy range from -6.10 K (12:30) to 3.41 K (08:00) on the case 

study day, with a maximum difference between any direction of 6.18 K (13:00). Lowest directional brightness 

temperatures occur at high zenith angles and at azimuth angles near the sun position. This is in agreement with prior 

results (Voogt, 2008). Around midday and early afternoon (e.g. 12:00, 14:00), view angles with high zenith angles (𝜙 > 

40o) near each cardinal azimuth angle underestimate nadir view brightness temperature by up to 6 K. This is likely caused 

by the cooler walls occluding the warm ground surfaces at these view angles. A “hot spot” around the sun angle is 

prominent during morning periods (08:00, 10:00) where brightness temperature differences between currently insolated 

facets and shaded facets is greatest. Inter-facet temperature differences are lower during afternoon, reducing the magnitude 

of any hot spot (14:00, 16:00). These examples highlight a critical application of the modelling approach presented to any 

thermal RS study in a real urban setting. 

 

Figure 13. Simulated brightness temperatures for 375 discrete directions using predetermined 3D distribution of longwave 

flux (𝑀𝐿𝑊
3𝐷 ) for the COSMO test site for 6 times on 2nd August 2014. Results normalized by the simulated brightness 
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temperature at nadir (ϕ = 0o, given in sub-headings) and shown with 1 K contours. Data and sun angle (yellow dot) 

are oriented with true north (𝜃 = 0o), with COSMO building orientation displayed (center grey square, 06:00). 

5 Conclusions  

The exitant longwave radiation from a simplified urban surface (COSMO outdoor scale model) is studied based on 

ground-based LWIR camera observations with detailed radiative transfer and camera view modelling. Ground based LWIR 

camera (𝑀𝐿𝑊
𝑐𝑎𝑚) observations from the COSMO test site over 24 h illustrate spatial and temporal patterns in upwelling 

LWIR radiation.  

Hourly per-pixel camera brightness temperatures are low at night, but vary more widely during the day (5th - 95th percentile 

differences reach 313.05 - 331.45 K between 12:00 – 13:00). As shadows cast by buildings and facet orientations likely 

explain most of this observed variability, these are often used to parameterise kinematic and radiometric temperature 

variability across the complete urban surface. Here, radiative transfer and camera view modelling is undertaken to identify 

the sunlit/shaded dynamics of camera pixels. The nature of inter-class and intra-class 𝑀𝐿𝑊
𝑐𝑎𝑚 distributions derived from the 

modelling results suggest that manual digitization or frequency distribution analysis may be problematic, particularly 

during daytime when inter-class distributions frequently overlap. This effect is most prominent for distributions of sunlit 

and shaded ground pixels.  

Despite the simple surface geometry of the study site, image classification by camera view modelling demands small 

margins of error for camera parameters such as image distortion (Section 2.4.1) and the physical positioning of cameras 

(Section 2.4.2) for the perspective of 𝑀𝐿𝑊
𝑐𝑎𝑚 to be modelled accurately. This finding can be attributed to the short surface-

sensor path lengths of the observational setup. Furthermore, sun-surface geometry and the timekeeping of observations 

must be known to a high degree of accuracy. Previous studies have not demonstrated direct comparison of observed and 

simulated results in such detail. 

Methods in this paper overcome sensor view modelling challenges by using the DART and Blender camera view models. 

A comparison between a captured and modelled high resolution digital camera image (Section 2.4.3) demonstrates the 

potential accuracy and resolution of the methods. Evaluating the ability of classified 𝑀𝐿𝑊
𝑐𝑎𝑚 observations to explain the 

variability of broadband longwave radiation exitant across the COSMO canopy surface uses the 3D distribution of exitant 

LWIR radiation (𝑀𝐿𝑊
3𝐷 ). It is concluded that 𝑀𝐿𝑊

3𝐷  accurately resolves the surface geometry of the test site when the 

parameterisation is at high temporal (15 min) and spatial (0.04 m) resolution. 𝑀𝐿𝑊
3𝐷  is evaluated for a given time step by 

projecting prescribed values of exitant broadband longwave radiation onto simulated ‘model world’ (MW) cameras with 

perspectives matching that of the ‘real world’ (RW) 𝑀𝐿𝑊
𝑐𝑎𝑚. Pixel level comparison between RW and MW camera imagery 

identifies areas where the prescribed 𝑀𝐿𝑊
3𝐷  does not resolve 𝑀𝐿𝑊

𝑐𝑎𝑚 variability; viz, building edges, sky view factor 

variability of vertical surfaces, and ground areas with a distinct shadow hysteresis. By aggregating all pixels in each image 

to a single brightness temperature for each MW and RW camera, these features average out to RW – MW differences 

within 0.65 K throughout a 24 h period. Understanding unresolved sub-facet processes may be required for 

parameterisation of 𝑀𝐿𝑊
𝑐𝑎𝑚 in more complex urban environments. Further classes of absolute irradiance values and sky 

view factor have potential to be applied using DART. 

𝑀𝐿𝑊
3𝐷  coupled with DART is shown to be a useful for assessment of urban thermal anisotropy (Section 4.5). Modelled 

anisotropy results for the study day show large differences between nadir and off-nadir apparent brightness temperatures 

which in general is in good agreement with prior studies. Modelled anisotropy is simplified in that it does not consider 

irregular building geometry and materials found in real cities. The regularity of the COSMO geometry may introduce an 

overestimation of modelled anisotropy compared to real world cities (Krayenhoff and Voogt, 2016). 

It is concluded that shadow histories classes and further quantification of surface irradiance fluxes using DART radiative 

transfer functionality would be useful to address in future studies. Depending on the availability of spatial databases, 

building geometry and material properties can also be resolved at levels of detail representative of complex urban 

environments. Material properties may be challenging to obtain due to a general lack of urban materials spatial databases. 

If the surface form is a predominant factor in effective thermal anisotropy, simplified assumptions of surface material may 

be sufficient when classifying 𝑀𝐿𝑊
𝑐𝑎𝑚 and parameterising 𝑀𝐿𝑊

3𝐷  for complex urban environments.  

Applying the methods presented in this paper to real cities may require a different approach to sensor siting. The current 

study uses a mast as a sensor platform that is ~4 times the mean building height (Figure 2). This enables an observational 

source area that is representative of the domain and that resolves sub-facet processes. A similar source area could be 

achieved in urban areas with compact low-rise and open high-rise morphology, with cameras installed on top of the taller 

high-rise buildings. 

Overall, this work provides a significant improvement to interpreting ground-based RS observations. Applied to real city 

settings, this has the potential to provide essential improvements to evaluating errors associated with operationally 

retrieved urban surface temperatures from satellite RS platforms and the parameterisation of longwave radiation exchanges 

in urban surface schemes.  
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