333 research outputs found
Existence of weak solutions for the generalized Navier-Stokes equations with damping
In this work we consider the generalized Navier-Stokes equations with the presence of a damping term in the momentum equation. The problem studied here derives from the set of equations which govern isothermal flows of incompressible and homogeneous non-Newtonian fluids. For the generalized Navier-Stokes problem with damping, we prove the existence of weak solutions by using regularization techniques, the theory of monotone operators and compactness arguments together with the local decomposition of the pressure and the Lipschitz-truncation method. The existence result proved here holds for any and any sigma > 1, where q is the exponent of the diffusion term and sigma is the exponent which characterizes the damping term.MCTES, Portugal [SFRH/BSAB/1058/2010]; FCT, Portugal [PTDC/MAT/110613/2010]info:eu-repo/semantics/publishedVersio
Formal Verification of Neural Network Controlled Autonomous Systems
In this paper, we consider the problem of formally verifying the safety of an
autonomous robot equipped with a Neural Network (NN) controller that processes
LiDAR images to produce control actions. Given a workspace that is
characterized by a set of polytopic obstacles, our objective is to compute the
set of safe initial conditions such that a robot trajectory starting from these
initial conditions is guaranteed to avoid the obstacles. Our approach is to
construct a finite state abstraction of the system and use standard
reachability analysis over the finite state abstraction to compute the set of
the safe initial states. The first technical problem in computing the finite
state abstraction is to mathematically model the imaging function that maps the
robot position to the LiDAR image. To that end, we introduce the notion of
imaging-adapted sets as partitions of the workspace in which the imaging
function is guaranteed to be affine. We develop a polynomial-time algorithm to
partition the workspace into imaging-adapted sets along with computing the
corresponding affine imaging functions. Given this workspace partitioning, a
discrete-time linear dynamics of the robot, and a pre-trained NN controller
with Rectified Linear Unit (ReLU) nonlinearity, the second technical challenge
is to analyze the behavior of the neural network. To that end, we utilize a
Satisfiability Modulo Convex (SMC) encoding to enumerate all the possible
segments of different ReLUs. SMC solvers then use a Boolean satisfiability
solver and a convex programming solver and decompose the problem into smaller
subproblems. To accelerate this process, we develop a pre-processing algorithm
that could rapidly prune the space feasible ReLU segments. Finally, we
demonstrate the efficiency of the proposed algorithms using numerical
simulations with increasing complexity of the neural network controller
On the competitive harvesting of marine resources
The paper is concerned with the optimal harvesting of a marine resource, described by an elliptic equation with Neumann boundary conditions and a nonlinear source term. We first consider a single agent, whose harvesting effort at various locations is described by a positive Radon measure. Necessary conditions for optimality are derived, complementing the existence result proved in [A. Bressan, G. Coclite, and W. Shen, SIAM J. Control Optim., 51 (2013), pp. 1186--1202]. The second part of the paper deals with a competitive scenario, where several groups of fishermen, from different coastal towns and hence with different cost functions, harvest the same marine resource. We prove the existence of a Nash equilibrium, which is characterized in terms of a suitable variational inequality.publishe
An Axiomatic Approach to Liveness for Differential Equations
This paper presents an approach for deductive liveness verification for
ordinary differential equations (ODEs) with differential dynamic logic.
Numerous subtleties complicate the generalization of well-known discrete
liveness verification techniques, such as loop variants, to the continuous
setting. For example, ODE solutions may blow up in finite time or their
progress towards the goal may converge to zero. Our approach handles these
subtleties by successively refining ODE liveness properties using ODE
invariance properties which have a well-understood deductive proof theory. This
approach is widely applicable: we survey several liveness arguments in the
literature and derive them all as special instances of our axiomatic refinement
approach. We also correct several soundness errors in the surveyed arguments,
which further highlights the subtlety of ODE liveness reasoning and the utility
of our deductive approach. The library of common refinement steps identified
through our approach enables both the sound development and justification of
new ODE liveness proof rules from our axioms.Comment: FM 2019: 23rd International Symposium on Formal Methods, Porto,
Portugal, October 9-11, 201
Diffeomorphism-invariant properties for quasi-linear elliptic operators
For quasi-linear elliptic equations we detect relevant properties which
remain invariant under the action of a suitable class of diffeomorphisms. This
yields a connection between existence theories for equations with degenerate
and non-degenerate coerciveness.Comment: 16 page
\epsilon-regularity for systems involving non-local, antisymmetric operators
We prove an epsilon-regularity theorem for critical and super-critical
systems with a non-local antisymmetric operator on the right-hand side.
These systems contain as special cases, Euler-Lagrange equations of
conformally invariant variational functionals as Rivi\`ere treated them, and
also Euler-Lagrange equations of fractional harmonic maps introduced by Da
Lio-Rivi\`ere.
In particular, the arguments presented here give new and uniform proofs of
the regularity results by Rivi\`ere, Rivi\`ere-Struwe, Da-Lio-Rivi\`ere, and
also the integrability results by Sharp-Topping and Sharp, not discriminating
between the classical local, and the non-local situations
LNCS
Reachability analysis is difficult for hybrid automata with affine differential equations, because the reach set needs to be approximated. Promising abstraction techniques usually employ interval methods or template polyhedra. Interval methods account for dense time and guarantee soundness, and there are interval-based tools that overapproximate affine flowpipes. But interval methods impose bounded and rigid shapes, which make refinement expensive and fixpoint detection difficult. Template polyhedra, on the other hand, can be adapted flexibly and can be unbounded, but sound template refinement for unbounded reachability analysis has been implemented only for systems with piecewise constant dynamics. We capitalize on the advantages of both techniques, combining interval arithmetic and template polyhedra, using the former to abstract time and the latter to abstract space. During a CEGAR loop, whenever a spurious error trajectory is found, we compute additional space constraints and split time intervals, and use these space-time interpolants to eliminate the counterexample. Space-time interpolation offers a lazy, flexible framework for increasing precision while guaranteeing soundness, both for error avoidance and fixpoint detection. To the best of out knowledge, this is the first abstraction refinement scheme for the reachability analysis over unbounded and dense time of affine hybrid systems, which is both sound and automatic. We demonstrate the effectiveness of our algorithm with several benchmark examples, which cannot be handled by other tools
Towards learning and verifying invariants of cyber-physical systems by code mutation
Cyber-physical systems (CPS), which integrate algorithmic control with
physical processes, often consist of physically distributed components
communicating over a network. A malfunctioning or compromised component in such
a CPS can lead to costly consequences, especially in the context of public
infrastructure. In this short paper, we argue for the importance of
constructing invariants (or models) of the physical behaviour exhibited by CPS,
motivated by their applications to the control, monitoring, and attestation of
components. To achieve this despite the inherent complexity of CPS, we propose
a new technique for learning invariants that combines machine learning with
ideas from mutation testing. We present a preliminary study on a water
treatment system that suggests the efficacy of this approach, propose
strategies for establishing confidence in the correctness of invariants, then
summarise some research questions and the steps we are taking to investigate
them.Comment: Short paper accepted by the 21st International Symposium on Formal
Methods (FM 2016
Application of uniform distribution to homogenization of a thin obstacle problem with p-Laplacian
In this paper we study the homogenization of p-Laplacian with thin obstacle in a perforated domain. The obstacle is defined on the intersection between a hyperplane and a periodic perforation. We construct the family of correctors for this problem and show that the solutions for the epsilon-problem converge to a solution of a minimization problem of similar form but with an extra term involving the mean capacity of the obstacle. The novelty of our approach is based on the employment of quasi-uniform convergence. As an application we obtain Poincare's inequality for perforated domains.QC 20140919. Updated from accepted to published.</p
On Type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations
Local regularity of axially symmetric solutions to the Navier-Stokes
equations is studied. It is shown that under certain natural assumptions there
are no singularities of Type I
- …