729 research outputs found

    Harmonization of space-borne infra-red sensors measuring sea surface temperature

    Get PDF
    Sea surface temperature (SST) is observed by a constellation of sensors, and SST retrievals are commonly combined into gridded SST analyses and climate data records (CDRs). Differential biases between SSTs from different sensors cause errors in such products, including feature artefacts. We introduce a new method for reducing differential biases across the SST constellation, by reconciling the brightness temperature (BT) calibration and SST retrieval parameters between sensors. We use the Advanced Along-Track Scanning Radiometer (AATSR) and the Sea and Land Surface Temperature Radiometer (SLSTR) as reference sensors, and the Advanced Very High Resolution Radiometer (AVHRR) of the MetOp-A mission to bridge the gap between these references. Observations across a range of AVHRR zenith angles are matched with dual-view three-channel skin SST retrievals from the AATSR and SLSTR. These skin SSTs act as the harmonization reference for AVHRR retrievals by optimal estimation (OE). Parameters for the harmonized AVHRR OE are iteratively determined, including BT bias corrections and observation error covariance matrices as functions of water-vapor path. The OE SSTs obtained from AVHRR are shown to be closely consistent with the reference sensor SSTs. Independent validation against drifting buoy SSTs shows that the AVHRR OE retrieval is stable across the reference-sensor gap. We discuss that this method is suitable to improve consistency across the whole constellation of SST sensors. The approach will help stabilize and reduce errors in future SST CDRs, as well as having application to other domains of remote sensing

    Stability assessment of the (A)ATSR sea surface temperature climate dataset from the European Space Agency Climate Change Initiative

    Get PDF
    Sea surface temperature is a key component of the climate record, with multiple independent records giving confidence in observed changes. As part of the European Space Agencies (ESA) Climate Change Initiative (CCI) the satellite archives have been reprocessed with the aim of creating a new dataset that is independent of the in situ observations, and stable with no artificial drift (<0.1 K decade−1 globally) or step changes. We present a method to assess the satellite sea surface temperature (SST) record for step changes using the Penalized Maximal t Test (PMT) applied to aggregate time series. We demonstrated the application of the method using data from version EXP1.8 of the ESA SST CCI dataset averaged on a 7 km grid and in situ observations from moored buoys, drifting buoys and Argo floats. The CCI dataset was shown to be stable after ~1994, with minimal divergence (~0.01 K decade−1) between the CCI data and in situ observations. Two steps were identified due to the failure of a gyroscope on the ERS-2 satellite, and subsequent correction mechanisms applied. These had minimal impact on the stability due to having equal magnitudes but opposite signs. The statistical power and false alarm rate of the method were assessed

    Sea surface temperature in global analyses: gains from the copernicus imaging microwave radiometer

    Get PDF
    Sea surface temperatures (SSTs) derived from passive microwave (PMW) observations benefit global ocean and SST analyses because of their near-all-weather availability. Present PMW SSTs have a real aperture-limited spatial resolution in excess of 50 km, limiting the spatial fidelity with which SST features, reflecting ocean dynamics, can be captured. This contrasts with the target resolution of global analyses of 5 to 10 km. The Copernicus Imaging Microwave Radiometer (CIMR) is a mission concept under consideration as a high-priority candidate mission for the expansion of the Copernicus space programme. This instrument would be capable of real aperture resolution < 15 km with low total uncertainties in the range 0.4–0.8 K for channels between 1.4 and 36.5 GHz, and a dual-view arrangement that further reduces noise. This paper provides a comparative study of SST uncertainty and feature resolution with and without the availability of CIMR in the future SST-observing satellite constellation based on a detailed simulation of CIMR plus infrared observations and the processing of global SST analyses with 0.05◦ final grid resolution. Simulations of CIMR data including structured errors were added to an observing system consisting of the Sea and Land Surface Temperature Radiometer (SLSTR) on Sentinel-3A and the Advanced Very High Resolution Radiometer (AVHRR) on MetOp-A. This resulted in a large improvement in the global root-mean-square error (RMSE) for SST from 0.37 K to 0.21 K for January and 0.40 K to 0.25 K for July. There was a particularly noticeable improvement in the performance of the analysis, as measured by the reduction in RMSE, for dynamical and persistently cloudy areas. Of these, the Aghulas Current showed an improvement of 43% in January and 48% in July, the Gulf Stream showed 70% and 44% improvements, the Southern Ocean showed 57% and 74% improvements, and the Maritime Continent showed 50% and 40% improvements, respectively

    Adjusting for desert-dust-related biases in a climate data record of sea surface temperature

    Get PDF
    Atmospheric desert-dust aerosol, primarily from north Africa, causes negative biases in remotely sensed climate data records of sea surface temperature (SST). Here, large-scale bias adjustments are deduced and applied to the v2 climate data record of SST from the European Space Agency Climate Change Initiative (CCI). Unlike SST from infrared sensors, SST measured in situ is not prone to desert-dust bias. An in-situ-based SST analysis is combined with column dust mass from the Modern-Era Retrospective analysis for Research and Applications, Version 2 to deduce a monthly, large-scale adjustment to CCI analysis SSTs. Having reduced the dust-related biases, a further correction for some periods of anomalous satellite calibration is also derived. The corrections will increase the usability of the v2 CCI SST record for oceanographic and climate applications, such as understanding the role of Arabian Sea SSTs in the Indian monsoon. The corrections will also pave the way for a v3 climate data record with improved error characteristics with respect to atmospheric dust aerosol

    ATSR Reprocessing for Climate: Sea Surface Temperature (ARC-SST) v1.1 - Global 1 Degree Monthly Average - Obs4MIPs

    Get PDF
    This dataset contains observations of Sea Surface Temperature (SST) from the series of (Advanced) Along-Track Scanning Radiometers ((A)ATSRs). SSTs are provided as monthly averages on a 1 degree longitude/latitude global grid and cover the period from 1st January 1997 to 31st December 2011. Equivalent data for Sea Surface Temperature Anomaly (SSTA), relative to climatology, are also available. The dataset is derived from the data products of the ATSR Reprocessing for Climate: Sea Surface Temperature (ARC-SST_ project (Merchant et al, 2012). These are daily SST estimates on a 0.1 degree longitude/latitude grid and the methods used to derive the monthly 1 degree dataset are described in the accompanying technical note (tosTechNote_ATSR_L3_ARC-v1.1.1_199701_201112.pdf). The ARC-SST source data from which this dataset is derived is available at: http://badc.nerc.ac.uk/view/neodc.nerc.ac.uk__ATOM__DE_3abf8c96-a7d6-11e0-9cb8-00e081470265 Reference: Merchant, C. J., O. Embury, N. A. Rayner, D. I. Berry, G. Corlett, K. Lean, K. L. Veal, E. C. Kent, D. Llewellyn-Jones, J. J. Remedios, and R. Saunders (2012), A twenty-year independent record of sea surface temperature for climate from Along Track Scanning Radiometers, J. Geophys. Res., 117, C12013, doi:10.1029/2012JC008400.Data: tos_ATSR_L3_ARC-v1.1.1_199701_201112.nc and tosAnom_ATSR_L3_ARC-v1.1.1_199701_201112.nc. Documentation: tosTechNote_ATSR_L3_ARC-v1.1.1_199701_201112.pdf
    corecore